对于经济突变带来的巨大社会和政治后果,已经在凯恩斯主义和新凯恩斯主义的框架中讨论过若干种政策措施。例如,当代的财政政策可以被看做一种动力学控制。它应该可以减少经济涨落的幅度。但是,战后的经验已经表明,希望把涨落减少到零是不可能的,也不可能保持就业率不变。而且,一项好的政策总是需要相当的时间来收集数据、分析结果并提出相应的立法和行政措施。结果是任何政策当它起作用时可能就已经过时了。因此,在复杂的非线性经济世界中,一项政策措施可能会是完全无用的。
在经济和社会领域中,正反馈的自我增加机制是非线性复杂系统的典型特征。例如,我们可以考察,加利福尼亚的圣克拉拉县为何会成为著名的硅谷。在二十世纪四五十年代,一些著名的人物(如休利特、帕卡特和肖克利)在斯坦福大学附近建立了一些电子公司。这些先锋造成了高技术工程师和产品的集中,成为一个吸引子,最终900多家公司随之应运而生。在开始时,出现的是一些随机的涨落,它们有利于圣克拉拉县。因此,硅谷是如何出现的,从非线性角度来看,这并非奇迹,而是合乎规律的事件。但是,从随机性来看,它产生于圣克拉拉县就是一个奇迹。
非线性系统具有若干个可能的平衡态,但没有最终的稳定态。非线性经济即使在最初是均匀的,但由于它们的高度敏感性和起始条件的微小偏差,也就不可能选择同样的发展道路。因此,正反馈的非线性经济不可能像计算机那样进行编程和运行,因为它的长期进化是不可预测的。复杂系统理论可以有助于设计一个经济动力学的整体相图。但是,对于找到经济福利的局部平衡,经验和直觉有时比科学知识更有帮助。对于处理高度敏感的复杂系统,政治家们必须具有高度的敏感性。
在社会科学和人文科学中,人们常常把生物进化和人类文化的历史进行严格的区分。主要原因在于,民族和文化的发展显然是由有意向性的带着其态度、情感、计划和理想的人类行为所引导的,而生物进化系统则假定是由无意向性的自组织过程所推动的。从微观的角度看,我们用他们的意向性和愿望观察人类个体。甚至在像动物生态这样的生物系统中,个体也有某种程度的意向性行为。
复杂系统探究方式的关键在于,从宏观角度看,政治、社会和文化秩序的发展,都不仅仅是单个意图的加和。
亚当·斯密已经认识到,经济财富和福利分配并不是由社会的一个个面包师和屠夫的善良愿望所施舍的。个体的自私自利的意向性可能会与集体利益相冲突。然而,他们的(非线性的)相互作用却通过“看不见的手”(斯密)或“理性的狡黠”(黑格尔)实现了集体的平衡态。
由意向性行为的个体组成的非线性系统,也许比物理的原子系统或化学的分子混合物更复杂。在《复杂性中的思维》一书中,意向性行为和意识的建模,是被看做一种复杂神经系统的自参照整体状态,由神经元的非线性相互作用造成的。以不同复杂程度出现的集体有序现象是所有非线性系统内在的共同特征,这样的系统并不一定要与意识相联系。作为人类社会的集体秩序的政治状态,尽管其形成可以用具有意向性行为人们的非线性相互作用引起的相变来建模,但并非是黑格尔认为的那样有某种意识或智慧。
因此,在复杂系统的数学框架中,“进化”概念并非专指特定的生物进化机制。在复杂系统中,所谓的演化方程描述了其元素的动力学,这些元素可以是基本粒子、原子、分子、有机体、人类、公司,等。宽泛意义的另一方面是复杂性概念自身。在社会科学的情景中,有许多方面的复杂性。
复杂系统与社会进化
在克劳斯《复杂性中的思维》一书构建的复杂系统的数学框架中,复杂性首先是定义为一种非线性,这是混沌和自组织的必要条件,但不是充分条件。另一方面,线性意味着叠加原理,用通俗的说法是“整体只是其部分之和”。
复杂性的第二个重要方面是由算法的结构来定义的。计算机科学中复杂性理论提供了一种复杂性程度的等级,例如依赖于计算机程序或算法进行计算所需要的时间。由于人们常常用计算机图形来模拟非线性复杂系统,它们的算法复杂性就可能描述为它们的自组织能力。
在社会科学中,高度工业化社会的复杂性主要是由大量的公民及其关系、组织亚结构及其相互依赖性所构成。我们应该记得,在一个复杂系统中,形成集体(协同)有序时元素的巨大数目不是根本性的,非线性相互作用才是根本性的。
在复杂系统的数学框架中,对于人类历史和社会文化发展的物理学或生物学还原论,在任何情况下都是不恰当的。社会和文化发展的模型,必须联系其特定的约束和限度来进行讨论。一个重要的方法论问题,是如何提供对于这些模型的经验检验和确证。因此,对复杂文化系统进行计算机辅助模拟已成为关键性工具,借此可以对其动力学提供新的洞察,从而对我们的决策和行动大有帮助。
历史上,对于社会科学中的非线性问题的兴趣可以追溯到托马斯·马尔萨斯。他指出,因为人口指数的增长而食物供应只能线性地增长,人口将超过食物供给。1844年,威霍尔斯特修订了该指数方程,指出人口增长的速率正比于人口生产以及资源总量与现存人口对资源消费量之差。他的著名的具有平衡吸引子特征的逻辑曲线,被运用于人口统计学、经济学和社会科学等许多场合。它提供了一种可能的一系列分叉和相变(包括混沌)。
由沃尔特拉和洛特卡描述的“捕食者——被捕食者”生态系统的演化,是另一个被应用于社会科学的模型。例如,“洛特卡——沃尔特拉模型”有助于我们理解农业社会的出现。因为人类能够进行学习,他们就能够改变他们与环境相互作用的程度,使得这种作用快于大自然遗传进化的反向措施。人类社会为了生存只有不断地改进其狩猎能力,从而消灭被捕食群体。然后,社会也将被消灭。结果是捕食者和被捕食群体都将灭绝。但是,农业使得被捕食者的生产速率增加了。于是,人类群体就增加了,并能够在某种平衡态稳定下来。
生物系统的进化是受其基因制约的。达尔文进化论中,新个体的出现是通过对突变体的自然选择实现的,其中突变是自发产生的。在较高等动物的群体中,由于模仿,出现了新的行为变化和适应的可能性。社会发展起来诸如法律系统、国家、宗教、贸易等特殊的组织机构,从而使得后代的行为变化得到稳定化。
复杂系统探究方式提供的基本性洞察,无论是遗传进化还是行为进化,都不需要诸如进行指导的神的意志、生命力那样的总体程序或者某种总体的进化优化策略。基因的生存或者总体行为模式的形成,都可以用组成系统的个体之间的局域相互作用来加以解释。我们可以更清楚地表述为,这是一个宗教或政治世界观的问题,即究竟有没有诸如上帝、历史或者进化那样的“总程序”。在复杂系统的方法论框架中,这些假设对于作出解释是不必要的,在“奥卡姆剃刀”及其理论概念经济的意义上是多余的。
显然,诸如生物有机体、动物群体或人类社会这样的非线性系统,已经进化得越来越复杂了。如今的社会,与亚里士多德的城邦或重农主义者的政治系统相比较,是一种以高度组织结构复杂性和信息网络连接为特征的社会。
从方法论的观点看,这里有一个问题,即如何在复杂系统的框架中来表示社会的社会文化进化。吸引子和平衡态的认识,需要一个社会文化动力学的相图来定义“社会文化状态”和“社会文化的态空间”。但是,什么是维多利亚英国和魏斯曼共和国的社会文化的态空间呢?这些问题揭示了一些明显的局限性。
复杂系统探究方式在历史和社会科学中的可能性如何?
要在纯粹的数学态空间中再现出一个历史时期的研究目标是不可能的。有关的数据常常是没有的、零乱的,并且不是定量的。在这最后一节中,具有态空间和动力学相图的复杂系统,被用来为人类社会系统的经济进化建立模型。例如,经济学家并没有声称要再现魏玛共和国的完整的经济发展。但是,对于那些影响或者依赖于政治和文化史的典型经济图景,商业循环周期的非线性内在模型或线性外在模型能够给予描述。
经济模型并非是由于自己的缘故而建立的。经济学家希望理解经济的动力学,以通过对于结构的更好洞察来对决策提供支持。社会的经济动力学嵌在总体的社会文化发展之中。从其复杂性的角度看,对于社会文化的建模,人们已经进行的尝试仅仅是针对诸如城市中心这样的子系统。这些模型抓住的是城市系统演化的典型特征,这有助于政治家和公民在适当情形更好地进行决策。
现代工业化的社会中存在着大量的形形色色的中心,包括各种各样的尺寸、形式和特征,从非常大的人口密集的城市到人口不多的村庄。我们可以问一问,这些不同中心的空间分布的原因何在,它们将如何随着时间发生进化。要对此作出回答,我们就需要了解城市系统总的时空状态,它是由其中的人员——个人、家庭、管理者相互作用造成的,这些人员可能在追求不同的合作或冲突的利益。一个城市中心的结构有赖于商业和工业利益、货物的流通和服务、交通联系、文化吸引力、生态要求。而且这些因素都必须精确并且能够测量。城市系统与外部世界有若干种交换。因此,它可以被解释为一种耗散结构,用一种复杂动力学系统来建模。
在复杂系统的数学框架中,一个城市系统的生长就如同活的有机体一样。
在彼特·艾伦的分析中,城市系统的地理空间由具有50个局域点的三角形点阵来表示。城市系统的生长由两个方程所决定,方程描述了局域点的人口变化以及这些点提供的就业演化。局域的人口和局域的就业能力由作为正反馈的城市放大作用连接起来。就业的集中提供了客观条件和公共基础设施,它们反过来又引起了正反馈。同时,居民和投资者又在争夺提供负反馈的中心空间。
一种可能的策略是在特定的地点给予特殊的投资以干预城市结构。这种决策策略适用于城市系统中迄今为止欠发展区域的发展。例如,投资不仅仅是一种经济手段,同时也是一种文化吸引力和交通联系。有时,一项投资可以激起某种局部的蝴蝶效应,引出某种总体后果,而与设计者的善良意愿起相反作用,其原因在于模型的非线性限制了长期预测的可能性。
一个城市的动力学是复杂系统的实际例子。它表明,如果忽略了非线性的后果,个别人的良好愿望是不充分的,甚至是危险的。个体行为的集体效应是我们社会的特征。进行决策时,要尽可能地意识到这些集体效应。这些后果的重要性不仅仅出现在对于具体决策及其非线性的计算机模拟中,甚至并没有参与具体的计划活动的公民,也必须意识到社会中复杂的相互关联性。
煽动人们要求有一位可以解决所有问题的强有力的政治领袖,从民主观点来看,这不仅仅是危险的。从数学角度看,由于现代高度工业化社会的复杂性,还表明它是错误的。另一方面,我们不要把希望寄托在个别的政治家或党派的身上,也不要当我们被夸大了的预期未能实现时,又走向完全对政治丧失信心的另一端。人类社会的特征是其中的成员具有意向性。然而,如同原子团、分子混合物、细胞有机体或生态群体一样,他们也是由非线性的复杂性规律所支配的。
社会学理论中,对于复杂性和非线性的认识论考察仍然处于初期。发展起一种能够适当处理社会问题复杂性的统计数学,可以作为通向传统社会学概念的桥梁。在复杂系统探究方式中,社会现象是由非线性方程来描述的。例如,对埃米尔·德克海姆谈到的社会中的连带性,我们可以把这种概念的功能方面归因于复杂系统的非线性和集体效应。我们可以把政治决策划分为“线性的”和“非线性的”。例如,“线性的”相应于“个人的”选择,而“非线性的”相应于行政管理、大众媒介和政党这样的组织体制环境。许多公民和组织机构的行动和反应,都可以被理解为社会统计描述中的固有涨落。社会的确定论特征并不仅仅反映了分布函数的平均值,它们是按照如同主方程那样的非线性规律随时间发展的。
在公司中,一般都存在着某种非正式结构和正式结构,非正式结构是人们之间的情感联系模式导致的,正式结构则是由等级组织支配的。非正式结构通过一种自组织过程而实现,它可以用社会中的人际关系结构来代表。这种研究方式可以追溯到20世纪50年代对于城市家庭的社会关系网的研究,现在已发展成为一种高级的计算机辅助的社会学工具。从个体相互关联的微观角度看问题,就形成了一种对于社会结构的全局透视。
正如在城市生长的情形或者迁移动力学中对社会组织的计算机实验模拟,虽然不可能对个体行为得出确定论的预测,但是它们有助于人们理解社会动力学的敏感性和复杂性。因此,就有可能去实现适宜的环境和条件,从而改进相应社会系统中的人们的生活状况。