如果一组勾股数中,除了1以外,没有其他公因子,这组勾股数就称为素勾股数。比如3、4、5是素勾股数,而6、8、10就不是素勾股数。上面我们给出了求勾股数的公式,为了方便地说明普林斯顿322号,不妨将公式稍加改变就得到求素勾股数的公式:
2=2uv,b=u(上标2)-v(上标2),c=u(上标2)+v(上标2)
其中u和v互质,奇偶不同,并且u>v。比如u=2,v=1就满足互质、u是偶数、v为奇数、u>v的条件,将它们代入公式得:
a=2×2×1=4,b=2(上标2)-1(上标2)=3,c=2(上标2)+1(上标2)=5,即3、4、5为一组素勾股数。
数学家算出来普林斯顿322号的u和v,并列在表2的右侧。
这个发现令人震惊,难道在三千多年前,古巴比伦人就找到了求素勾股数的一般方法了?难道说这些数就是他们研究成果的记载?如果不是,所列为什么大部分都是素勾股数?
从目前的研究来看,谁也下不了结论。
二千多年前,中国人和希腊人发现了勾股定理,已经属于数学史上的伟大创举,如果巴比伦人真的在更早的时间就找到了素勾股数,那将是更伟大的事情。因为用现代数学家的眼光来看,找素勾股数是一件很困难的事!要想揭开普林斯顿322号之谜,恐怕只好依赖对巴比伦遗址的进一步发掘。
数字“冰雹”
让我们先来做一个游戏:
你随便取一个自然数,如果它是偶数,就用2去除它;如果它是奇数,将它乘3之后再加1,这样反复运算,你会发现,最终必然得1。
比如,取自然数N=6。6是偶数,要先用2除,6÷2=3;3是奇数,要将它乘3之后再加1,3×3+1=10;按照上述法则续往下做:10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1。从6开始经历了3→10→5→16→8→4→2→1,最后得1。
用—个大一点的数运算,结果还是这样吗?取自然数N=16384。你会发现这个数连续用2除了14次,最后还是得1。
上面用的两个数都是偶数,奇数是不是这样的呢?
取自然数N=19。按照上面的法则来算,可以得到下面一串数字:
19→58→29→88→44→22→11→34→17→52→26→13→40→20→10→5→16→8→4→2→1。
经过20步,最终也变为最小的自然数1。
这个有趣的现象引起了许多数学爱好者的兴趣。一位美国数学家说:“有一个时期,在美国的大学里,它几乎成了最热门的话题。数学系和计算机系的大学生,差不多人人都在研究它。”人们通过大量演算发现最后结果总是得1。于是,数学家便提出如下一个猜想:
对于任一个自然数N,如果N是偶数,就把它变成N/2;如果N是奇数,就把它变成3N+1。按照这个法则运算下去,最终必然得1。
这个猜想最初是由哪位数学家提出来的,已经搞不清楚了,但似乎并不古老。20世纪30年代,德国汉堡大学的学生考拉兹就研究过它。1952年一位英国数学家独立发现了它。几年之后它又被一位美国数学家所发现。自世纪50年代起,这个问题一再引起人们的广泛兴趣。
在日本,这个问题最早是由角谷静夫介绍到日本的,所以日本人称它为“角谷猜想”。1960年角谷静夫初次听到这个问题,他说:“有一个月,耶鲁大学每一个人都在研究这个问题,但没有任何结果。我到芝加哥大学提出这个问题之后,也出现了同样现象。有人开玩笑说,这个问题是企图减缓美国数学进展的一个阴谋。”足见这个问题的吸引力之大。
人们争先恐后地去研究这个猜想,一遍遍地进行运算,在运算过程中发现,算出来的数字忽大忽小,有的计算过程很长。比如从27算到1,需要112步。有人把演算过程形容为云中的小水滴,在高空气流的作用下,忽高忽低,遇冷结冰,体积越来越大,最后变成冰雹落了下来,而演算的数字最后也像冰雹一样掉了下来,变成了1。因此人们又给这个猜想起了个形象的名字——冰雹猜想。诱人的“数字冰雹”把研究者的热情一点点地变冷了,很多人退了出来,仍在坚持研究的人,至今还是证明不出来。这一串串数难道一点规律也没有吗?
有。研究者惊喜地发现,每串数的最后3个数都是4→2→1。
为了验证这个事实,从1开始算一下:
3×1+1=4,4÷2=2,2÷2=1。结果是从1→4→2→1转了一个小循环又回到了1。不论从哪个自然数开始,经过漫长的历程,几十步、几百步、几千步,最终都要掉进1→4→2→1这个循环中去。有的数学家开玩笑说,1→4→2→1是个“数字陷阱”,掉进去就别想出来!
日本东京大学的米田信夫对2(上标40)(大约相当于1.2万亿)以下所有的自然数在电子计算机中逐一进行了验算,最后无一例外地都以1→4→2→1结束。
虽然人们对大量的自然数做了验算,但是“大量”并不能代替“全体”,要知道自然数有无穷多个,靠验算是验算不完的,必然找出一般规律(数学上常常用公式表示)。也许1→4→2→1这个“陷阱”能成为解决该问题的突破口。
现代数学趣题
1.自行车和苍蝇
两个男孩各骑一辆自行车,从相距20千米的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车迳直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。
如果每辆自行车都以每小时10千米的高速前进,苍蝇以每小时15千米的高速飞行,那么,苍蝇总共飞行了多少千米?
答案
每辆自行车运动的速度是每小时10千米,两者将在1小时后相遇于20千米距离的中点。苍蝇飞行的速度是每小时15千米,因此在1小时中,它总共飞行了15千米。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。
据说,在一次鸡尾酒会上,有人向约翰·冯·诺伊曼提出这个问题,他思索片刻便给出正确的答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的正是无穷级数求和的方法”,他解释道。
2.一圈硬币
这种游戏的玩法是,取任意数目的筹码(可以是硬币、棋子、石子或小纸片等),把它们摆成一个圆圈。两位游戏者轮流从中取走一枚或两枚筹码,但如果是取走两枚筹码,这两枚筹码必须相邻,即它们中间既无其他筹码,也无取走筹码后留下的空当。谁取走最后一枚筹码谁胜。
如果双方都玩得有理,谁肯定能获胜?他应该采用什么样的策略?
答案
后手如果采用下述的两步策略,他就总能获得这个游戏的胜利:
(1)当先手取走一枚或两步策略,圆圈的某一个位置将出现单独的空当。于是,后手从圆圈中与这个空当相对的一侧取走一枚或两枚筹码,使得余下的筹码被两个空当分成数目相等的两群。
(2)从这往后,无论先手从哪一群中取走一枚或两枚筹码,后手总是相应地从另一群中取走相同数量的筹码。
如果你实践一下下面给出的游戏过程的例子,就可以明白这种策略。这里的数字是圆圈中筹码依次的编号。
先手 后手
8 3
1,2 5,4
7 9
6 10(胜)
试用这种策略对付你的朋友,你很快就会发现,为什么无论用多少筹码摆成圆圈,后手总能立于不败之地。
3.三枚硬币
乔:“我向空中扔3枚硬币。如果它们落地后全是正面朝上,我就给你10美分。如果它们全是反面朝上,我也给你10美分。但是,如果它们落地时是其他情况,你得给我5美分。”
吉姆:“让我考虑一分钟。至少有两枚硬币必定情况相同,因为如果有两枚硬币情况不同,则第三枚一定会与这两枚硬币之一情况相同。而如果两枚情况相同,则第三枚不是与这两枚情况相同,就是与它们情况不同。第三枚与其他两枚情况相同或情况不同。第三枚与其他两枚情况相同或情况不同的可能性是一样的。因此,3枚硬币情况完全相同或情况不完全相同的可能性是一样的。但是乔是以10美分对我的5美分来赌它们的不完全相同,这分明对我有利。好吧,乔,我打这个赌!”
吉姆接受这样的打赌是明智的吗?
答案
吉姆打这个赌是不太明智的。他的上述推理是完全错误的。
为了弄清3枚硬币落地时情况完全相同或不完全相同的可能性。我们必须首先列出3枚硬币落地时的所有可能的式样。总共有8种式样。
每种式样出现的可能性都与其他式样相同。注意只有两种式样是3枚硬币情况安全相同。这意味着,3枚硬币情况完全不同的可能性是八中有二,即2/8,可简化为1/4。
3枚硬币落地时情况不完全相同的式样有6种。因此其可能性是6/8,即3/4。
换句话说,乔的打算是,从长远的观点看,他每扔4次硬币就会赢3次。他赢的3次,吉姆总共要付给他15美分。吉姆赢的那一次,他付给吉姆10美分。这样每扔4次硬币,乔就获利5美分——如果他们反复打这个赌,乔就有相当可观的赢利。