书城自然科学必谈的数学趣闻
29540200000004

第4章 托尔斯泰问题

19世纪时,俄国有位大文豪叫列夫·托尔斯泰。他的作品形象生动逼真,心理描写细腻,语言优美,用词准确鲜明,对欧洲和世界文学产生过巨大影响。如《战争与和平》、《复活》等等,至今仍然拥有千千万万的读者。

这位大文豪又是一个有名的“数学迷”。每当创作余暇,只要见到了有趣的数学题目,他就会丢下其他事情,沉湎于数学演算之中。他还动手编了许多数学题,这些题目都很有趣而且都不太难,富于思考性,因而在俄罗斯少年中广为流传。例如:

一些割草人在两块草地上割草,大草地的面积比小草地大1倍。上午,全体割草人都在大草地上割草。下午他们对半分开,一半人留在大草地上,到傍晚时把剩下的草割完;另一半人到小草地上去割草,到傍晚还剩下一小块没割完。这一小块地上的草第二天由一个割草人割完。假定每半天的劳动时间相等,每个割草人的工作效率也相等。问共有多少割草人?

这是托尔斯泰最为欣赏的一道数学题,他经常向人提起这个题目,并花费了许多时间去寻找它的各种解法。下面这种巧妙的算术解法,相传是托尔斯泰年轻时发现的。

在大草地上,因为全体人割了一上午,一半的人又割了一下午才将草割完,所以,如果把大草地的面积看作是1,那么,一半的人在半天时间里的割草面积就是1/3.

在小草地上,另一半人曾工作了一个下午。由于每人的工效相等,这样,他们在这半天时间里的割草面积也是1/3.

由此可以算出第一天割草总面积为4/3.

剩下的面积是多少呢?由大草地的面积比小草地大1倍,可知小草地的总面积是1/2.因为第一天下午已割了1/3,所以还剩下1/6.这小块地上的草第二天由1个人割完,说明每个割草人每天割草面积是1/6.

将第一天割草总面积除以第一天每人割草面积,就是参加割草的总人数。

43÷16=8(人)

后来,托尔斯泰又发现可以用图解法来解答这个题目,他对这种解法特别满意。因为不需要作更多的解释,只要画出了这个图形,题目的答案也就呼之即出了。