从形状上看,体积大的卫星基本上都呈球形,体积小的卫星有的呈球形,有的是椭球形,有的是不规则的形状。在不规则形状的卫星中,我们了解最多的是火卫一和火卫二,它们的形状很像两块马铃薯。卫星的大小和形状展示出它们自身的不同经历,记录了它们复杂的生涯。至于它们的历史究竟是怎么回事,现在还说不清楚。
现代太阳系演化理论认为,九大行星和大多数卫星的轨道,都遵循一些基本规律。它们是:同向性,即都是沿反时针方向运动;共面性,即卫星轨道基本上都在自己行星的赤道面内;近圆性,绝大多数卫星轨道都近似正圆轨道,甚至比行星轨道还圆。同时,绝大多数卫星的自转周期等于公转周期,即像月球一样,总以同一个半面向着自己的行星。
然而,“别出心裁”的不规则的“小字辈”也大有“星”在。比如,木卫六、木卫七、木卫八、木卫九、木卫十、木卫十一、木卫十二、木卫十三、土卫九、海卫二和海卫二等,它们的轨道都不在自己行星的赤道面内,而有20°以上的交角。特别是木卫八、木卫九、木卫十一、木卫十二和土卫九,它们与众不同,在轨道上沿顺时针方向运动,在天文学上称这样的运动为逆行。
更奇特的是土卫三、土卫十三和土卫十四,这三颗卫星共“居住”在同一个轨道上。土卫十三在土卫三前面60°,土卫十四则在土卫三后面60°。
三个“小字辈”运行得还很协调,令人刮目相看!土卫七更有自己的“绝活”,它的自转似乎有点杂乱无章,在轨道上公转也摇摇晃晃,活像一个醉汉。它为什么是这个样子呢?有人认为,可能它遭到过一次撞击,偏离了原轨道,正在逐渐恢复之中。土卫十和土卫十一的轨道十分靠近,离土星都在15.1万~15.2万公里之间,公转周期都是16小时40分左右。所不同的是土卫十的轨道与土星赤道之间的倾角是0.3°,土卫十一则是0.1°。有人认为,这两颗卫星原来可能就是一颗卫星,后来在某次还不知其原因的撞击事件中分成两半。
海卫二的运动也有特色。它的轨道非常扁,离海王星最近时有140万公里,最远时竟达到970万公里,相差近7倍,实属罕见。
最有趣的卫星和行星之间的运动关系要算冥王星和冥卫一。冥卫一的自转周期和公转周期及冥王星的自转周期,都是6.3867个地球日。这意味着冥卫一总以同一面向着冥王星,而冥王星也总以同一面向着冥卫一。也就是说,从冥王星上看冥卫一时,它在天空中的位置是固定的,在冥卫一上看冥王星时也是这样。这真是太空奇观!
太阳家庭中的这些五花八门的卫星,为我们深入地认识太阳系内的天体规律提供了丰富多彩的信息,同时也提出了众多的疑难问题。
太阳家族的邻居
我们居家总要了解自己周围环境和邻居的状况。地球的空间环境和邻里就是太阳系内的行星际空间。那么,太阳系所处的恒星际空间又有哪些邻居呢?它们的状况如何?我们知道,在银河系内约1000亿颗恒星中,离太阳最近的恒星是半人马座的比邻星,它离太阳约4.2光年,目视星等为11等星。
可见,在距太阳4光年半径的星际空间是没有任何恒星的,只有太阳和它的家族在这里安居乐业,这是一个充满活力的空间。在距太阳5光年之内,有3颗恒星。它们是:上面介绍的比邻星,还有与比邻星在一起组成目视三合星的另外两颗恒星,它是半人马座a星(甲星),叫南门二,它是全天第三颗最亮的恒星,约为0等星,它与我们太阳属同一类恒星,其体积和质量比太阳稍大一点,距太阳约4.3光年。另一颗星亮度为1等星,距太阳约4.3光年,体积和质量略比太阳小一点。在距太阳10光年内共有11颗恒星,除上面介绍的3颗恒星外,还有著名的蛇夫座巴纳德星,它是1916年由美国天文学家巴纳德发现自行最大的恒星,它每年自行10.31",为9.5等星,距太阳5.9光年;大犬座天狼星,它是目视双星:甲星就是天狼星,是全天最明亮的恒星,距太阳约8.6光年,为-1.5等星;另一颗乙星是天狼星的伴星,为8.5等星,距太阳也是8.6光年,它是一颗典型的白矮星;鲸鱼座中UV星也是一颗双星,距太阳都是9光年,其中UV星B是1948年发现的特殊型的变光恒星,它在3分钟内,光度可增强11倍,然后又慢慢暗下来,它为13等星,是距太阳最近的耀星;狮子座佛耳夫359星距太阳8.1光年;大熊座拉兰德21185星距太阳8.2光年;人马座罗斯154星距太阳9.3光年。距太阳21光年内,则有100颗恒星,其中包括天鹰座中的牛郎星,小犬座中的南河三和天鹅座61星(两颗)等。
太阳的这些近邻各有特色,天文学家们早已把它们列为重要的研究对象。
太阳家族之谜
在所有的各类天体里面,与我们人类关系最密切的要数太阳,影响最大的也是太阳。人类最关心和研究得最多的天体,除了地球这艘“宇宙航船”外,大概就是太阳了。人类对太阳的研究,可以一直追溯到最遥远的古代,而科学地研究太阳,并取得辉煌成果,那是最近几百年的事。从把太阳当作神到今天我们对这颗太阳系中心大体的了解,是个不断解谜而又不断提出新谜、以及逐步深化和更全面地认识的发展过程。
可是,即使站在今天科学技术水平的角度来看太阳,它向我们提出来的谜,也包括那些疑难之点在内,仍旧是相当多,而且是五花八门,更不要说今后一定还会继续不断地出现的新的谜和问题。把这些谜写成一本厚厚的大书、也并不是很难的事。
中微子失踪案
太阳内部究竟是什么样子?
恐怕谁都不能完全说清楚。因为,人们平常对太阳的观测,不论用的是什么手段,不论是可见光还是射电波、紫外线、X射线等,基本上只能看到它的表面和大气中的一些现象。日震为我们提供了太阳内部的部分信息,但这种信息很有限,而且也不能深入到太阳最核心的部分。
中微子,这种物质结构中的基本粒子之一,向科学家们伸出了支援之手。
中微子是什么样的东西呢?它哪来那么大的本领?
我们知道,小到纸张、铅笔,以及塑料、橡皮、布匹等等,都是由无数分子组成的,而分子一般则是由两个以上的不同化学元素的原子组成,譬如,我们生活中不可缺少的水,就是由氢原子和一个氧原子合在一起组成的。
那么,原子是由什么东西组成的呢?是由比它还要小得多的基本粒子组成的。到目前为止,已经发现了好几十种基本粒子,如光子、电子、质子、中子等,中微子是其中的一种。
中微子的存在早在20世纪30年代初就有人提出来了,20多年后从实验中得到证实。中微子是一种性质很特别的基本粒子,它的质量小得不能再小,几乎快接近于零了。它不带电,也不与一般物质打“交道”,是个脾气孤僻又很难进行“对话”的家伙。
有意思的是,太阳中心在热核反应过程中,却产生出大量的中微子,每秒钟约200万亿亿亿亿个。由于它们对别的物质概不理睬,势必就浩浩荡荡迅速穿过太阳内部各层,直奔空间,其中一部分就直奔地球而来。根据理论来推算,每秒钟、每平方厘米的地面上大概落下600亿个中微子,我们的头顶上要承受多少中微子的袭击呀!比雨点密了多少倍呀!不过,我们一点都不必担心,中微子的质量实在是太小太小了,我们对它没有丝毫的感觉,也不会受到它任何的伤害。
从太阳核心部分来的中微子,必然带着核心部分的宝贵信息,如此大量的中微子亲临地球,向人类报告太阳内部的温度、压力、密度和各种物理状况,这对人类来说,真是“踏破铁鞋无觅处”的绝好机会。
设置陷阱
知道有大量中微子来到地球上,那还是比较容易的,真正要抓住它们,哪怕是只抓住少数“代表”,就不那么容易了。为了排除一切干扰,包括避免由宇宙线产生的中微子混进来“捣乱”,英国布鲁克黑文实验室的戴维斯等科学家,于1955年布置了一个特殊的陷阱,像捕捉野兽那样,等待中微子来自投罗网。他们的陷阱是个大容器,装下了39万升(开始实验时只装了3900升)、重600吨的四氯化二碳溶液。容器安置在一座报废了的在地面下1500多米深的金矿矿井里。这对中微子来说是无所谓的,因为它不会与别的物质发生作用,钢筋水泥、铜墙铁壁、上层岩石都挡不住它,它会轻而易举地直接来到矿井,穿透容器壁,而与溶液发生作用。
从计算情况来看,大体上1800亿亿亿亿个化学元素氯的原子,平均可以在一秒钟内抓到一个中微子,而溶液中大致有200多万亿亿亿个氯原子。这么算起来,戴维斯等人布置的陷阱每天只能落进去1.1个中微子,可说是不多。我们把一件很困难完成的事比作是大海捞针,逮中微子比大海捞针还难得多。
结果怎么样呢?
莫名其妙的案情
经过10多年的探测,有了初步结果,“中微子被逮住了”的消息不胫而走,立即轰动了全世界。天文学家们为抓获了直接从太阳核心部分来的物质而兴高采烈,并寄予很大希望。可是,好景不长,戴维斯等很快发现,实验结果与理论推算不符合。原本希望每天能捕捉到1.1个中微子,实际情况却有很大出入。1973年的实测结果是每5天“捉”到1个中微子,有时候则是接连好几天1个中微子的影子都不见。1978年得出的结果是,平均2.3天得到1个中微子。大体说来,中微子的探测值只是理论值的1/3,两者相差颇多。
其余的中微子哪里去了呢?
戴维斯及其合作者对陷阱和实验步骤的全过程作了反复的推敲和考察,认为容器、溶液和整个实验工作是无可指责的。这意味着中微子理论确实出现了“危机”,这就是直到现在仍使科学家头痛的中微子“失踪”案。
奇怪,太阳中微子哪里去了呢?
人们因此而受到启发,认为中微子的失踪至少反映出三个方面的问题:
(1)或许我们对于太阳内部构造,处于特殊状态下的物质性质,了解得太少了,甚至有严重缺陷和错误,应该重新掌握大量第一手资料,建立更加符合实际情况的理论模型。
(2)也许我们已经建立起来的热核反应的理论有问题,尤其是在太阳内部的具体条件下,中微子的产生理论和机制可能都有误,需要重新考虑,也许就根本没有产生出那么多中微子。
(3)对中微子本性的了解,对中微子在从太阳到地球的过程中某些性质是否会改变等,在认识上也许都还存在不少问题。
可疑的踪迹
为了解释观测与理论之间的矛盾,科学家们从不同的角度提出的假说已达好几十种。下面是其中的几个例子。
太阳内部重元素的含量,现在一般都定为2.5%。如果这个比例能降低到0.1%的话;如果太阳内部的自转比表面快得多,中心部分的自转比表面快两倍的话;如果太阳核心部分的磁场特别强的话;如果太阳中心有个半径只有几厘米而质量达到太阳的十万分之一的微型黑洞的话;……太阳中微子的理论值就会比现在所认为的小得多,它就能与观测值比较符合。
这类“如果”还可以举出一些,但是,不管情况究竟怎么样,是否有点道理,它们给人的感觉是:假说都是为了适应观测值的需要,而特意生搬硬套地“制造”出来的,根本不能解决什么根本问题。
有人将太阳中微子的“失踪”,跟太阳耀斑联系在一起;也有人认为,太阳中微子流的数量随时间而变化,可能与太阳活动存在着一定的关系。
有人主张太阳的组成成分、中心温度,与传统的认识也许有所不同,正是这些因素影响着中微子数目的多少。
有人指出,应该重新测定中微子的质量,也许能从这里找到中微子“失踪”案的答案。几乎已成定论的太阳核心热核反应过程,也许事实上并不完全是那样。再说,中微子从太阳飞到地球的8分多钟时间内,在奔走了15000万公里之后,它本身会不会表现出“疲劳”而变得“衰弱”些呢?
总而言之,已经提出来的假说真是五花八门,但都不成熟。看来,最好的办法莫过于继续加强观测和实验,进一步搜集和掌握更多的有说服力的第一手资料。
戴维斯的实验没有取得预期的结果。他失败了,但并不灰心,他准备建立一个灵敏度更高的“陷阱”,来捕捉更多的中微子。日本神冈的中微子监测器已开始运转了好几年;前苏联北高加索地区匹克桑河床下面的地下实验室正在进行一项非常重要的实验,它能探测到的中微子范围比前面介绍的美国和日本的要广得多;意大利罗马附近大萨索山地下实验室和加拿大的、布置在深2000多米镍矿井中的中微子实验室,也都分头积极进行各具特色的实验。
我们相信,总有一天太阳中微子之谜会被揭穿,“失踪”案最后会水落石出。
太阳伴星之谜
在天文学上,一般把围绕一个公共重心互相作环绕运动的两颗恒星称为物理双星;把看起来靠得很近,实际上相距很远、互为独立(不作互相绕转运动)的两颗恒星称为光学双星。光学双星没有什么研究意义。物理双星是惟一能直接求得质量的恒星,是恒星世界中很普遍的现象。一般认为,双星和聚星(3~10多颗恒星组成的恒星系统)占恒星总数的一半多。太阳作为一颗较典型的恒星,它是否也有自己的伴侣——伴星呢?或者说,它是否也属于一种比较特殊的物理双星呢?近几年来,这是科学家非常关心的问题,这个问题是由地球上物种灭绝问题提起来的。
太阳是双星吗
天文学家曾有过太阳具有伴星的想法是很自然的事。当人们发现天王星和海王星的运行轨道与理论计算值不符合时,曾设想在外层空间可能另有一个天体的引力在干扰天王星和海王星的运动。这个天体可能是一颗未知的大行星,也可能是太阳系的另一颗恒星——太阳伴星。
为了解释美国那两位古生物学家的发现,1984年,美国物理学家穆勒在和他的同事共同提出了太阳存在着一颗伴星的假说。与此同时,另外的两位天体物理学者维特密利和杰克逊,也独立地提出了几乎完全相同的假说。
穆勒在和他的同事们讨论生物周期性灭绝的问题时说:“银河系中一半以上的恒星都属于双星系统。如果太阳也属于双星,那么我们就可以很容易解决这个问题了。我们可以说,由于太阳伴星的轨道周期性地和小行星带相交,引起流星雨袭击地球。”他的同事哈特灵机一动,说:“为什么太阳不能是双星呢?同时,假设太阳的伴星轨道与彗星云相交岂不是更合理一些?”
于是,他们在当天就写出了论文的草稿。他们用希腊神话中“复仇女神”的名字,把这颗推想出来的太阳伴星称为“复仇星”(Nemesis)。