书城科普读物探究式科普丛书-生命的基因密码:遗传
49517800000002

第2章 生命之谜——遗传概述(2)

同一座位上的其他等位基因一般都直接或间接地由野生型基因通过突变产生,相对于野生型基因,我们称它们为突变型基因。在二倍体的细胞或个体内有两个同源染色体,所以每一个座位上有两个等位基因。如果这两个等位基因是相同的,那么就这个基因座位来讲,这种细胞或个体称为纯合体;如果这两个等位基因是不同的,就称为杂合体。在杂合体中,两个不同的等位基因往往只表现一个基因的性状,这个基因称为显性基因,另一个基因则称为隐性基因。

基因的显隐性在遗传学中是非常重要的,所以我们要着重介绍一下。

在一对基因中只要有一个是显性基因,其后代的相貌和特征就能表现出来。而隐性基因则只有当成对基因中的两个基因同时存在时,其特征才能表现出来。以人的相貌特征为例,在胚胎形成时,胎儿要分别接受父亲和母亲的同等基因,假如孩子从父亲的基因里继承了卷发,又从母亲的基因里继承了直发,但是他最后却长了一头直发,这说明在遗传时直发是显性,卷发是隐性。然而,在这个孩子的染色体中仍存在卷发的隐性基因,在他长大成人后,如果他的妻子和他一样,体内也存在卷发的隐性基因,那么他们的孩子就会有一头卷发,表现出隔代遗传的现象,这就是显性基因和隐性基因的区别。

3.基因识别

人最初都是由一个受精卵经过不断的分裂增殖发育而成的,在这个受精卵里蕴涵着父母的无数个遗传基因,详尽设定了后代的容貌、生理、性格、体质,甚至于某种遗传病。子女就是按照这些特征发育成长的,于是就出现了孩子在某个地方像父亲,某个地方像母亲的情况。那你知道什么是基因识别和亲子鉴定吗?

由于人类基因具有唯一性(双胞胎除外),目前法医学上用途最广的方面就是个体识别和亲子鉴定。在法医学上,同步发射(STR)位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继限制性片段长度多态性(RFLPs)与可变数量串联重复序列多态性(VNTRs)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪,为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。

4.基因工程

目前在基因领域已经取得很多的成绩,其中最值得一提的是基因工程。基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子遗传学和微生物学的现代方法为手段,将不同来源的基因(DNA分子),按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术研究基因的结构和功能提供了有力的手段。

基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。

它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。这一定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,实现很少量DNA样品“拷贝”出大量的DNA,而且是大量没有污染任何其他DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”,通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。

迄今为止,基因工程还没有用于人体研究,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,有的DNA中被植入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力。例如在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点。支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病。而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。

诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。

随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。如果将一种生物的DNA中的某个遗传密码片段连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物、繁殖后代的传统做法完全不同。这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。

5.基因工程的应用领域

(1)在生产领域,人们可以利用基因技术,生产转基因食品。

例如,科学家可以把某种肉猪体内控制肉的生长的基因植入鸡体内,从而让鸡也获得快速增肥的能力。但是,转基因因为有高科技含量,我们自然会担心吃了转基因食品中的外源基因后会改变人的遗传性状,比如吃了转基因猪肉会变得好动,喝了转基因牛奶后易患恋乳症等等。华中农业大学的张启发院士认为:“转基因技术为作物改良提供了新手段,同时也带来了潜在的风险。基因技术本身能够进行精确的分析和评估,从而有效地规避风险。对转基因技术的风险评估应以传统技术为参照。科学规范的管理可为转基因技术的利用提供安全保障。生命科学基础知识的科普和公众教育十分重要。”

(2)军事上的应用。生物武器已经使用了很长的时间,细菌、毒气都令人为之色变。但是,传说中的基因武器却更加令人胆寒。

(3)环境保护上,我们可以针对一些破坏生态平衡的动植物,研制出专门的基因药物,既能高效把它们杀死,又不会对其他生物造成影响,还能节省成本。例如一直危害我国淡水区域的水葫芦,如果有一种基因产品能够将其高效杀灭的话,那每年就可以节省几十亿的治理费了。