天卫十七
天卫十七被临时命名为S/1997U2的天王星的新卫星已被发现,发现者所提议的命名Sycorax已经为IAU(国际天文联盟)所接受。Sycorax,即S/1997U2,的运行轨道从天王星算起约有1220万千米,直径大约为120千米。对这些尺寸的估计是根据其表面亮度及假定的反照率而得出的(大约有7%的误差)。它们的运行轨道为逆向,并且高度倾斜。
在这个发现之前,天王星是唯一一颗未被找到“不规则”卫星的巨型气体行星。所谓“不规则”卫星是指它们的轨道面不平行于行星赤道面。
如其他的不规则卫星(诸如木星的外层8颗卫星,土卫九和海卫二)。同样,它们可能是被吸引的小行星。它们不可能是在其现行的轨道上形成的。它们是用地面望远镜所观察到的最模糊的卫星。
太白星
太白星即金星。太阳系中接近太阳的第二颗行星,也是各大行星中离地球最近的一个。我国古代把金星叫做太白星,早晨出现在东方时叫启明星,晚上出现在西方时叫长庚星。
太阳磁暴
当太阳表面活动旺盛,特别是在太阳黑子极大期时,太阳表面的闪焰爆发次数也会增加,闪焰爆发时会辐射出X射线、紫外线、可见光及高能量的质子和电子束。其中的带电粒子(质子、电子)形成的电流冲击地球磁场,引发短波通讯所称的磁暴。磁暴时会增强大气中电离层的游离化,也会使极区的极光特别绚丽,另外还会产生杂音掩盖通讯时的正常讯号,甚至使通讯中断,也可能使高压电线产生瞬间超高压,造成电力中断,也会对航空器造成伤害。
太阳伴星
太阳伴星是人们假设出来的一个红矮星或棕矮星,距离太阳50000至100000个天文单位,并以复仇女神的名字来命名。
该伴星推断其公转周期为2600万年,在经过奥尔特云带时,干扰了彗星的轨道,使数以百万计的彗星进入内太阳系,从而增加了与地球发生碰撞的机会。
现时,尚未有证据证明太阳存在伴星,也使得地球的周期性大灭绝原因受争论。
在天文学上,一般把围绕一个公共重心互相作环绕运动的两颗恒星称为物理双星;把看起来靠得很近,实际上相距很远、互为独立(不作互相绕转运动)的两颗恒星称为光学双星。光学双星没有什么研究意义。物理双星是唯一能直接求得质量的恒星,是恒星世界中很普遍的现象。一般认为,双星和聚星(3~10多颗恒星组成的恒星系统)占恒星总数的一半多。太阳作为一颗较典型的恒星,它是否也有自己的伴侣——伴星呢?或者说,它是否也属于一种比较特殊的物理双星呢?近几年来,这是科学家非常关心的问题,这个问题是由地球上物种绝灭问题提起来的。
太阳耀斑
太阳耀斑是一种最剧烈的太阳活动。一般认为发生在色球层中,所以也叫“色球爆发”。其主要观测特征是,日面上(常在黑子群上空)突然出现迅速发展的亮斑闪耀,其寿命仅在几分钟到几十分钟之间,亮度上升迅速,下降较慢。特别是在,耀斑出现频繁且强度变强。
太阳系外行星
太阳系外行星泛指在太阳系以外的行星。
1990年代人类才首次确认系外行星的存在,而自2002年起每年都有超过20个新发现的系外行星。现时估计不少于10%类似太阳的恒星都有其行星。随着系外行星的发现便令人引伸到它们当中是否存在外星生命的问题。
虽然已知的系外行星均附属不同的行星系统,但亦有一些报告显示可能存在一些不围绕任何星体公转,却具有行星质量的物体(行星质量体)。因为国际天文联会并未对这类天体是否属于行星有所定义,而至今亦未证实这类天体存在,所以本文不会论及这类天体。有关内容可参阅星际行星。
太空宇宙化学
太空宇宙化学研究宇宙物质的化学组成及其演化规律的分支学科,天文学与化学的边缘学科。主要研究内容有:①确定组成宇宙物质的元素、同位素和分子,测定它们的含量。②探讨宇宙物质的化学演化。这对研究天体起源和生命起源都有重要的意义,也推动了宇宙化学的发展。20世纪则有了更加广泛的手段,空间观测使得频谱分析扩展到“全波”范围:从射电、红外、可见光到紫外线、X射线、γ射线都能从事宇宙化学的研究,加上空间探测的直接登月、登火星等天体采集岩石、土壤样品,使得该学科获得了巨大的进展,例如星际分子的发现被誉为60年代四大天文发现之一。按照研究对象不同。宇宙化学又大致可分为:陨石化学、行星系化学、恒星化学、星际化学、同位素宇宙化学、宇宙线核化学等。
太阳方位角
太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。方位角以正南方向为零,由南向东向北为负,由南向西向北为正,如太阳在正东方,方位角为负90°,在正东北方时,方位为负135°,在正西方时方位角为90°,在正北方时为±180°。
太空
地球大气层以外的宇宙空间,大气层空间以外的整个空间。物理学家将大气分为5层:对流层(海平面至10千米)、平流层(10~40千米)、中间层(40~80千米)、热成层(电离层,80~370千米)和外大气层(电离层,370千米以上)。地球上空的大气约有3/4在对流层内,97%在平流层以下,平流层的外缘是航空器依靠空气支持而飞行的最高限度。某些高空火箭可进入中间层。人造卫星的最低轨道在热成层内,其空气密度为地球表面的1%。在1.6万千米高度空气继续存在,甚至在10万千米高度仍有空气粒子。从严格的科学观点来说,空气空间和外层空间没有明确的界限,而是逐渐融合的。联合国和平利用外层空间委员会科学和技术小组委员会指出,目前还不可能提出确切和持久的科学标准来划分外层空间和空气空间的界限。近年来,趋向于以人造卫星离地面的最低高度(100~110)千米为外层空间的最低界限。
太空站
太空站又称为“空间站”、“轨道站”或“航天站”,是可供多名宇航员巡航、长期工作和居住的载人航天器。在太空站运行期间,宇航员的替换和物资设备的补充可以由载人飞船或航天飞机运送,物资设备也可由无人航天器运送。1971年前苏联发射了世界上第一个太空站——“礼炮”1号,此后到1983年又发射了“礼炮”2—7号。1986年前苏联又发射了更大的太空站“和平”号,目前仍在轨运行。美国1973年利用“阿波罗”登月计划的剩余物资发射了“天空实验室”太空站。
太空项链
1993年3月4日,美国天文学家苏梅克夫妇和他们的好友列维从拍摄的天文照片中,发现了一串晶莹璀璨的“太空项链”,原来这是一群彗星,它被命名为“苏梅克—列维9号”彗星。
这串“太空项链”原为一颗彗星,后来彗核分裂为21块,一字排开长达16万公里以上。就像一列节20多“节”的“彗星列车”,苏梅克——列维9号彗星也是迄今为止最奇特的天体之一。1994年7月17日,这串“太空项链”撞向了木星,形成了彗木大碰撞的奇观。
1993年3月4日,美国天文学家苏梅克夫妇和他们的好友列维从拍摄的天文照片中,发现了一串晶莹璀璨的“太空项链”,原来这是一群彗星,它被命名为“苏梅克—列维9号”彗星。
这串“太空项链”原为一颗彗星,后来彗核分裂为21块,一字排开长达16万公里以上。就像一列节20多“节”的“彗星列车”,苏梅克——列维9号彗星也是迄今为止最奇特的天体之一。1994年7月17日,这串“太空项链”撞向了木星,形成了彗木大碰撞的奇观。
太空气泡
“太空气泡”,是指宇宙中的气体,受到强大粒子风和辐射的冲击而形成的空洞。这次的发现之所以令人惊奇,是因为过去哈勃天文望远镜所发现的气泡,都是由特别大的恒星或星团喷射出的强大粒子风和辐射形成的,而这次却是由一个孤立的年轻恒星形成的,可以说是一个例外。
这颗恒星位于距离地球16万光年的N44F星云中,而N44F星云则处于天狼星座中。这颗恒星在图示的“太空气泡”中心的下部,它的主要成分是冷气体形成的密云,但它每秒钟喷发出来的粒子质量要比我们的太阳多100万倍,而且粒子云的速度为每小时700万公里,这个速度是太阳风的5倍。
强烈的粒子风和紫外线辐射,与恒星的气体外壳相撞击,迫使气体向外鼓起,形成了直径为35光年的“太空空穴”。在这个“太空空穴”中,还形成了由冷的宇宙灰尘和气体形成的几个“支柱”,这些“支柱”在外形上很像哈勃望远镜在10年前发现的“太空空穴”中的“支柱”,那些“支柱”景观奇妙,被称为“造物主支柱”。新发现的“太空空穴”长度不短,在5个光年到8个光年之间,他们指向粒子风的源头。
太空旅游
太空旅游是基于人们遨游太空的理想,到太空去旅游,给人提供一种前所未有的体验,最新奇和最为刺激人的是可以观赏太空旖旎的风光,同时还可以享受失重的味道。而这两种体验只有太空中才能享受到,可以说,此景只有天上有。太空游项目始于2001年4月30日。第一位太空游客为美国商人丹尼斯蒂托,第二位太空游客为南非富翁马克-沙特尔沃思,第三位太空游客为美国人格雷戈里-奥尔森。
太空行走
太空行走又称为出舱活动,即航天员在载人航天器之外或在月球和行星等其他天体上完成各种任务的过程。它是载人航天的一项关键技术,是载人航天工程在轨道上安装大型设备、进行科学实验、施放卫星、检查和维修航天器的重要手段。要实现太空行走这一目标,需要诸多的特殊技术保障。
太空瀑布
在地质学上叫跌水,即河水在流经断层、凹陷等地区时垂直地跌落。在河流的时段内,瀑布是一种暂时性的特征,它最终会消失。侵蚀作用的速度取决于特定瀑布的高度、流量、有关岩石的类型与构造,以及其他一些因素。在一些情况下,瀑布的位置因悬崖或陡坎被水流冲刷而向上游方向消退;而在另一些情况下,这种侵蚀作用又倾向于向下深切,并斜切包含有瀑布的整个河段。随着时间的推移,这些因素的任何一个或两个在起作用,河流不可避免的趋势是消灭任何可能形成的瀑布。
河流的能量最终将建造起一个相对平滑的、凹面向上的纵剖面。甚至当作为河流侵蚀工具的碎石不存在的情况下,可用于瀑布基底侵蚀的能量也是很大的。与任何大小的瀑布相关、也与流量和高度相关的特征性特点之一,就是跌水潭的存在,它是在跌水的下方,在河槽中掘蚀出的盆地。在某些情况下,跌水潭的深度可能近似于造成瀑布的陡崖高度。跌水潭最终造成陡崖坡面的坍塌和瀑布后退。
造成跌水的悬崖在水流的强力冲击下将不断地坍塌,使得瀑布向上游方向后退并降低高度,最终导致瀑布消失。
太空漫步
1983年3月,流行天王迈克杰克逊在“Mo-town25:Yesterday,TodayandFoever”晚会上,首度在世人眼前秀出令人叹为观止的“太空漫步”独创舞步,后来这个舞步更成为他演艺生涯中的“注册商标”。
随后,霹雳舞飓风般扫遍全球,深刻地影响了一代人,其中最为经典的属“太空漫步”,其舞步轻盈游滑使人在视觉上产生觉得舞者有不受地心引力又或惯性的错觉。“太空漫步”对舞者对舞蹈基础和自身对它的认识及理解甚高,不是任何人都可以学得会。因此“太空漫步”被视为一种登峰造极的舞步。
1983年4月7日,美国“挑战者”号航天飞机在太空飞行期间,两名航天员在太空自由自在地飘飞行走了5个多小时,这是人类首次不系绳索自由地在太空行走。
原来,航天员从飞船或航天飞机进入太空时,除了要穿上特制的航天服外,还要背上飞行器,有了它,航天员才能在太空自由“行走”。
太空激光武器——“利剑”
“利剑”——激光武器,用激光作武器的设想是基于激光的高热效应。激光产生的高温可使任何金属熔化。同时激光以光速(每秒钟30万千米)直线射出,延时完全可以忽略,也没有弯曲的弹道,因此不需要提前量,简直指哪打哪。另外,激光武器没有后坐力,可以迅速转移打击目标,还可以进行单发、多发或连续射击。激光武器的本质就是利用光束输送巨大的能量,与目标的材料相互作用,产生不同的杀伤破坏效应,如烧蚀效应、激波效应、辐射效应等。正是靠着这几项神奇的本领,激光武器成为理想的太空武器。
太空粒子束武器——“长矛”
“长矛”——粒子束武器:它是利用粒子加速器原理制造出的一种新概念武器。带电粒子进入加速器后就会在强大的电场力的作用下,加速到所需要的速度。这时将粒子集束发射出去,就会产生巨大的杀伤力。粒子束武器发射出的高能粒子以接近光速的速度前进,用以拦截各种航天器,可在极短的时间内命中目标,且一般不需考虑射击提前量。粒子束武器将巨大的能量以狭窄的束流形式高度集中到一小块面积上,是一种杀伤点状目标的武器,其高能粒子和目标材料的分子发生猛烈碰撞,产生高温和热应力,使目标材料熔化、损坏。
太空微波武器——“神鞭”
“神鞭”——微波武器,由能源系统、高功率微波系统和发射天线组成,主要是利用定向辐射的高功率微波波束杀伤破坏目标。微波波束武器全天候作战能力较强,有效作用距离较远,可同时杀伤几个目标。特别是微波波束武器完全有可能与雷达兼容形成一体化系统,先探测、跟踪目标,再提高功率杀伤目标,达到最佳作战效能。它犹如无形的“神鞭”,既能进行全面毁伤、横扫敌方电子设备,又能实施精确打击、直击敌方信息中枢。可以说,微波武器是现代电子战、电磁战、信息战不可或缺的基本武器。
太空动能武器——“飞镖”
“飞镖”——动能武器,动能武器的原理十分简单,说白了,它和飞镖伤人的道理完全一样。一切运动的物体都具有动能。根据动力学原理,一个物体只要有一定的质量和足够大的运动速度,就具有相当的动能,就能有惊人的杀伤破坏能力,这个物体就是一件动能武器。所谓动能武器,就是能发射出超高速运动的弹头,利用弹头的巨大动能,通过直接碰撞的方式摧毁目标的武器。这里最重要的一点是动能武器不是靠爆炸、辐射等其他物理和化学能量去杀伤目标,而是靠自身巨大的动能,在与目标短暂而剧烈的碰撞中杀伤目标。所以,它是一种完全不同于常规弹头或核弹头的全新概念的新式武器。
特殊星系
特殊星系是指形态和结构不同于哈勃分类中正常星系的河外星系。这一类星系的特殊性质主要是因星系核的活动和主星系同伴星系之间的相互扰动造成的。特殊星系可分为类星体、塞佛特星系、N型星系、射电星系、马卡良星系、致密星系、蝎虎座BL型天体、有多重核的星系和有环的星系等等。这种分类,有的是根据历史情况,有的则是根据发现者的姓氏而命名的。现在已知上述各类之间有重叠、交错的情况。例如,马卡良星系中至少有10%可归入塞佛特星系,N型星系中有很多又属于射电星系。
椭圆星系M89
梅西叶星表编号M89(NGC4552)是位于室女座,赤经12h赤纬35.7m视角大小+12° 33′2′x2′,是一个9.5等的椭圆星系,在M84和M86东方几度的地方。直径约15万光年,距离6千万光年。1781年梅西叶(又译梅西耶)发现了它。
椭圆星系M87梅西叶星表中的编号为87.NGC编号为4486。它是一种外观和我们银河系非常不同的星系,而就以椭圆星系来说,M87也是一个很奇特的星系。这个星系位在一个称为室女座星系团的星系团之中心,它要比一般的星系要大很多,直径足足有12万光年,比我们的银河系还要大,离我们约有5000万光年远。M87的核心可能有个超大质量的黑洞,因此星系的核心区域会产生高能量的粒子喷流。而且拥有非常大量的球状星团。在这张影像中,这些球状星团是环拱着M87明亮核心的昏暗亮斑。一般来说,椭圆星系所拥有的恒星数量和螺旋星系差不多,不过在外观上,它具有圆浑外貌,这点和扁平的螺旋星系非常不同。除此之外,它们也没有漩臂结构,含有极少量的云气和尘埃。由于M87有一个巨大的喷流,所以受到天文学家特别的关注。