1903年,居里首先探讨了应用放射性测定地质年代的可能性。1907年,B·B·博尔特伍德得出了第一批放射性地质年龄数据。
同位素地质年代测定要求高灵敏度、高精度的测量技术,因为矿石中这些同位素的含量很低。有时样品量本身也很少,如从月球上采来的月岩等。主要应用超高真空、高精度的质谱计,并借助稳定同位素稀释剂来精确测定样品中的同位素比值。在制样过程中有时需要用超纯试剂和白金、石英容器来完成超低本底的化学纯化和分离。低本底放射性测量、中于活化、加速器的超灵敏质谱等核技术也在同位素年代测定中得到应用。
由于分析技术的进步,同位素地质年代学从20世纪40年代末以来有了显著的进展。目前已经测定了全球各地区大量岩石的年代数据,根据这些数据建立的地质年表有助于了解地史过程中全球性的地壳运动和岩浆活动的规律,探讨各大陆的形成和漂移,了解矿床形成的时代和空间分布的规律。此外铅同位素演化的研究表明地球、月球和陨石有共同的起源,它们的年龄都在45亿年左右。人们还利用同位素组成的差异,讨论太阳系早期演化历史中各重要事件的延续时间和它们之间的微小时间差异,甚至讨论太阳系元素本身合成的时间。
6.其它应用
在物理、化学等自然科学和日益受到重视的环境科学中,示踪方法也得到广泛应用。下面是一些主要的应用例子。
①超薄厚度的测定。例如在用暗视野检查的电子显微镜标本上,常用真空蒸发的方法涂一层镉的薄膜。加微量具有放射性的51Cr到镉中,测定一定面积薄膜的放射性。另外把含有不同重量的同一标记物的溶液在相同面积上蒸干并计数,作为标准。比较薄膜样品和标准的放射性,就可测出薄膜的重量,从而求出其厚度。此法可测出厚度薄至2.5×10-14m的量级。
②溶解度的测定。把已知放射性比活度的133Ba标记的硫酸钡溶于水中,当溶液达到饱和以后,取出一小部分来测量其放射性比活度。从测得的放射性比活度就可算出单位体积内硫酸钡的含量或硫酸钡的溶解度。
③化学反应的历程。例如在酯类的水解过程中,究竟是酰基氧键(a)断裂,还是烷基-氧键(b)断裂呢?用含有H482O的氢氧化钠水溶液进行皂化后发现,标记原子进入到水后生成酸分子而不进入到醇分子中去,这充分证明了,反应中被打开的是酰基氧键。
④环境污染的检查。例如在制造荧光灯等接触汞的工业,需要探测空气中汞的浓度,以保证工人不会发生汞中毒。很方便的方法就是用197Hg来标记汞,然后用探测仪器测量车间空气中的放射性,检查汞有否超过最高允许浓度。
放射性核素也可用作监测沿海污染的手段。例如,以82Br标记的溴化铵作为示踪剂,模拟释放到海洋中去的污水。将此示踪剂注入到污水出口处,它的扩散和途径反映了污水在大海中的稀释和运输;在不同水路测出的放射性位置及强度代表特定情况下的水流图案;最后依靠稀释曲线、水流方向及速度以及污染指示剂的消失率等数据,编成海岸不同位置的污染统计资料。
⑤水利学考察。海洋湍流和大风对水流泥沙迁徙的影响是水利学工作经常需要考察的对象之一。有一种方法是将46Sc吸附在离子交换树脂,其大小接近于天然砂粒,然后将其投入河口或海岸附近水中,用放射性探测仪器追踪,便可研究各种自然条件的变化(如刮风)对砂流的影响,乃至泥砂淤积的地点和速度等。
(第三节 )核裂变与核聚变
核裂变
一个重原子核分裂成为两个(或更多个)中等质量碎片的现象。按分裂的方式裂变可分为自发裂变和感生裂变。自发裂变是没有外部作用时的裂变,类似于放射性衰变,是重核不稳定性的一种表现;感生裂变是在外来粒子(最常见的是中子)轰击下产生的裂变。
1934年,费米等人用中子照射铀,企图使铀核俘获中子,再经过β衰变得到原子序数为93或更高的超铀元素,这引起了不少化学家的关注。
在1934—1938年间,许多人做了这种实验,但是不同的研究者得到了不同的结果,有的声称发现了超铀元素,有的却说得到了镭和锕。
1908年,哈恩和斯特拉斯曼做了一系列严格的化学实验来鉴别这些放射性产物,结论是:所谓的镭和锕实际上是原子量远比它们小的镧和钡。对这种现象,只有假设原子核分裂为两个或两个以上的碎块才能给予解释。这种分裂过程被称为裂变。
1939年迈特纳和弗里施首先建议用带电液滴的分裂来解释裂变现象。同年玻尔和惠勒在原子核液滴模型和统计理论的基础上系统地研究了原子核的裂变过程,奠定了裂变理论的基础。
1940年,彼得扎克和弗廖罗夫观察到铀核会自行发生裂变,从而发现了一种新的放射性衰变方式——自发裂变。1947年,钱三强等发现了三分裂(即分成三个碎片,第三个可以是α粒子,也可以是和另外两个碎片质量相近的碎片)。1955年,玻尔根据原子核的集体模型提出了裂变道的概念,把裂变理论推进了一步。1962年,波利卡诺夫等发现了自发裂变同质异能态。1967年,斯特鲁金斯基提出了在液滴模型基础上加壳修正的“宏观-微观”方法,导出了双峰裂变势垒,这是裂变研究史上的又一新成果。
对裂变现象的研究,几十年来始终是核物理的一个活跃的分支。这是由于:①裂变有着重大的实用价值;②裂变是一个极复杂的核过程,研究这一过程有助于原子核物理学的发展。在裂变发现后,很快就弄清楚了,裂变时不但释放出巨大的能量,而且同时还发射出几个中子。既然中子能引起裂变,裂变又产生更多的中子,因此可以通过链式反应在宏观尺度上使原子核释放出能量来。这就找到了大规模利用核能的途径。除了巨大的核能在军事和能源方面的实际应用之外,随着反应堆的建立,放射性同位素开始大规模生产并广泛应用于工农医等各部门。从发现衰变到掌握原子能,是20世纪科学史上的重要一页。下面我们将着重介绍裂变反应堆。
裂变反应堆是一种实现可控核裂变链式反应的装置,是核能事业中最重要的装置之一,通常简称为反应堆或堆。
1938年啥恩和斯特拉斯曼发现了铀的原子核裂变后,接着科学家们就开始探索如何利用核裂变所放出的巨大能量。一个铀原子核裂变时放出约200MeV的能量,比一个碳原子氧化时放出的能量(4.1eV)大5×107倍左右。要使裂变能有实际应用意义,必须有大量铀核裂变。铀核的裂变主要由中子引起,因此问题就归结为如何取得大量中子。由于铀核裂变后会放出几个中子,人们就想到了在成块物质中利用核裂变本身产生的中子来引起新的核裂变,使裂变反应持续进行,形成核链式反应。
1942年12月,费米领导的科学家小组建成了世界上第一座人工的裂变反应堆,首次实现了可控核裂变链式反应。接着美国首先利用反应堆把铀-238转化为钚-239,作为原子弹的装料制成了钚原子弹,后来又用反应堆作为动力源建成了核潜艇。
20世纪40年代和50年代,反应堆主要为军事目的服务。从50年代中期起,世界上大量建造用于各种研究工作的反应堆,同时开始建立把反应堆用来发电的核电站。核电站的燃料资源丰富,经济性好,燃料用量很小,优点很多。60年代中期起,许多国家已在大力发展核电站,或称发展核动力。这以后的十几年中,核动力的发展很快。目前,世界上已有428座核电站在运行,总功率达4亿多千瓦,约占世界发电总量的15。
1.反应堆工作原理
(1)裂变链式反应
自持的裂变反应叫做裂变链式反应。例如铀-235的核吸收一个中子后发生裂变,又放出两三个中子,除去消耗,至少还有一个中子能引起另一个铀-235核发生裂变,使裂变自持地进行下去。核裂变链式反应的进行过程基本上是一个以中子为媒介的,裂变核素部分质量转化为能量的过程。
在反应堆内产生核链式反应的物质称为核燃料,又称裂变材料。只有能大量获得,且易吸收热中子并引起裂变的核素才能作为核燃料。这种核素有铀-235、铀-233和钚-239三种。只有铀-235存在于天然铀中,而铀-233和钚-239都要靠反应堆生产。
用反应堆产生核能,需要解决以下几个问题:①为核裂变链式反应提供必要的条件,使链式反应持续进行,并能把反应中产生的能量取出来应用;②能控制链式反应,使其按工作需要进行;
③避免核裂变链式反应所产生的中子或放射性物质危害工作人员和附近居民的身体健康。
在反应堆内,中子只有三种归宿:引起裂变、被吸收或逸出堆外。要实现核链式反应,就必须设法减少后两种损失。铀-235是奇A核,结合能小,俘获中子后形成的复合核裂变势垒较低,任何能量的中子都可使它裂变,且对热中子有很大的裂变截面;铀-238是偶偶核,结合能较大,复合核裂变势垒较高,只有能量超过1MeV的高能中子才能使它裂变,而且裂变截面不大。高能中子同铀-238核的主要作用是非弹性散射,大部分裂变中子都通过非弹性散射降低能量,再在多次碰撞中被铀238核吸收,不能实现核链式反应。天然铀的主要成分是铀-238,而铀-235仅占0.71%,要利用天然铀实现核链式反应有两种途径:①用分离同位素的方法增加天然铀中铀-235的浓度,称浓缩铀或浓集铀。这样处理后,甚至用比较小的装置也能实现核链式反应,这种反应堆中引起裂变反应的中子能量可以高一些,因此能建成快中子反应堆;②将天然铀或低浓集铀制成较细的棒,插在减速剂(通常用吸收中子截面较小的,如水、重水和石墨等轻物质)中,使核裂变放出的高能中子很快减速到热能区,而铀-235热中子裂变截面比铀238的热中子吸收截面要大200倍。这样就有足够数量的中子引起铀-235核裂变,以弥补铀-235含量较少的弱点。根据这种途径建立的反应堆称为热中子堆。目前用于发电、供热、提供动力和研究的反应堆大都是这类堆。
(2)临界状态值
为了防止过多的中子在引起裂变前逸出反应堆,反应堆要足够大,并具有足够多的燃料。通常把反应堆中通过裂变等过程得到的中子数(即下一代中子数)同引起裂变的中子数(即上一代中子数)之比称为中子增殖系数(用符号κ表示)。核链式反应的规模维持不变的状态称为临界状态,此时堆芯的体积和堆内核燃料的质量分别称为临界体积和临界质量。堆芯的体积和核燃料的质量大于临界值时中子增殖系数大于1,核链式反应的规模就越来越大,这种状态称为超临界状态;反之,堆芯的体积和核燃料的质量小于临界值时中子增殖系数小于1,核链式反应的规模就越来越小,反应逐渐趋于停止,这种状态称为次临界状态。临界值对判断和控制裂变反应堆的运行状态有重要意义。
2.裂变反应堆的组成
反应堆内具有特定形状和结构的核燃料称为燃料元件。反应堆的核心部分称为堆芯,又称活性区。堆芯主要由燃料元件、慢化剂和一些结构部件组成,还需有冷却剂流过堆芯。一般情况下在堆芯周围设有反射层,把外逸的部分中子送回堆芯,以减少中子的损失。反射层以外是堆的壳体,再外面是屏蔽层。
燃料元件是堆芯的主要部件。大多数反应堆采用圆棒形燃料元件,也有用片形、圆管形、球形、六角管形等元件的。它主要由裂变材料芯片(或芯体)和包壳两部分组成。裂变材料应具有良好的辐照和化学稳定性、高导热系数和低膨胀系数(金属、合金、氧化物或碳化物等形式都可以应用)。可以用天然铀,也可以用浓缩铀作裂变材料,用钚作裂变材料时可以单独使用,也可以同铀混合使用。元件包壳起支撑结构作用,同时也用来防止裂变产物外逸污染冷却剂回路,并防止冷却剂同裂变材料直接接触发生腐蚀等不利的化学反应。包壳材料要求对中子有较小的吸收截面,足够的机械强度,良好的热导率,耐辐照,同裂变材料和冷却剂在化学上能相容,价格低廉,易于加工。低温小功率反应堆可以用铝或其合金傲元件包壳,核电站用反应堆一般用锆合金做包壳,也有用不锈钢的,在温度高达700℃以上的高温气冷堆中则用石墨做燃料包壳。
铀-238和钍-232本身不易产生裂变。但它们吸收中子后能变成钚-239和铀-233等裂变材料,因此有人又称之为次级裂变材料。在用铀为燃料的反应堆内总有铀-238存在,由它转化而得的钚-239一部分在堆内被作为燃料消耗掉,另一部分留存在由堆内卸出的辐照后燃料中。将这种辐照后燃料加以化学处理(即后处理),可以回收钚-239。将钍-232加入燃料元件中放在反射层中,可以得到铀-233。
为了应用反应堆中产生的热量,并且不使堆芯和反射层因受到高热而损坏,就要用液体或气体作为冷却剂流经反应堆,把热量引导出来,用以产生蒸气去发电或作为动力,或用于其它方面。冷却剂除应具有同慢化剂相似的性能(要求可以略低一些)外,还需要具有高导热能力。常用的冷却剂为普通水、重水、氦和二氧化碳,在快中子增殖堆中则用液态金属钠作冷却剂。冷却剂的用量很大,需要循环回收使用,即使用普通水作冷却剂,由于对水质的要求很高并在中子照射下带有放射性等原因,也需回收循环使用。因此,一般情况下,用水泵、风机和管道组成一个冷却回路,让冷却剂在其中循环流动,在一些用于发电的反应堆中,冷却回路被称为一回路。多数情况下在一回路中没有热交换器,而是把热能传给二回路中的水,以产生蒸气送去发电或作为动力。在某些反应堆中,慢化剂和冷却剂用同一种材料。
3.裂变反应堆的控制