书城科普读物奇妙的发明(科学知识大课堂)
10494100000025

第25章 化学大发明(11)

故事开头的问题可以回答了。“真金不怕火炼”的原因是,通常的柴火温度仅几百摄氏度,远低于金的熔点。所以它能“烈火烧身若等闲,金光闪耀在人间”。但若用了助熔剂,就能使它在几百摄氏度时熔化而“真金也怕火炼”了。

卢瑟福步入原子内室

电子、X射线、物质的放射性以及具有放射性的镭、钋等元素先后被发现后,物质放射性的研究紧接着开始,从而揭开了原子内部的结构。

1902年,汤姆生的学生、出生在新西兰的英国物理学家欧内斯特·卢瑟福(Ernest Rutherford,1871~1937)等人在研究物质的放射性时,进行了这样的实验:在镭射线周边设置强磁场,发现原来成一束的射线分为三束。经再测定,带正电的一束是氦原子核He2+流,用希腊字母α(alfa)命名它;带负电的一束是电子流,用希腊字母β(beitǎ)命名它;不带电荷的一束是一种波长比X射线更短的电磁波,用希腊字母γ(gàmǎ)命名它。各束射线的运动速度不相同,又都有穿透一些物质的性能。

卢瑟福从α粒子的能量计算出放射性元素原子内部潜藏着大量的能量,这个数字可能是任何化学反应所产生的能量的100万倍。他认为没有理由假设这些潜藏的能量独为放射性元素所拥有,可能普遍存在各种元素的原子中。于是他考虑利用α粒子穿进原子内部去“刺探”原子内部的情况。

1909年,卢瑟福安排他的助手盖格(H.Geiger)和一位尚未取得学士学位的年轻大学生马斯登(E.Marsden)进行α粒子冲击金箔的实验。

盖格和马斯登观察到,通过金箔的α粒子大部分未受影响,没有发生偏离,或者偏离不到1°这样很小的角度。但是有个别α粒子偏离大到90°,甚至有的竟然被反弹回来。

这个发现使卢瑟福大为吃惊。如果他的老师汤姆生提出的电子均匀散布在正电荷中的原子模型是正确的,那么,按理金箔的原子里没有任何东西可以使高速而笨重的α粒子发生较大的偏折,更不用说被反弹回来。卢瑟福曾回忆道:“它是如此令人难以置信,正好像你用15英寸的枪射击一张薄纸,而枪弹居然会被反弹回来把你打中一样。”

卢瑟福进行了推测和计算。α粒子一定是碰到原子中带正电的东西才被弹回来的,而且这个带正电的东西一定是重而坚实的,否则就不会使一些α粒子偏离很大的角度。它一定又是很小的,比原子小得多,不容易被α粒子碰到,否则绝大多数的α粒子就会和这个东西碰撞,大部分α粒子偏离的角度就会很大。卢瑟福把这个带正电的、质量和整个原子差不多但比原子体积小得多的东西叫做原子核。

1912年春天卢瑟福提出了带核的原子模型,认为原子是由中心带正电的、体积很小的但几乎集中了原子全部质量的核和在核周围不断运动着的电子所构成,就像行星围绕太阳旋转构成的太阳系一样。

但是,根据1900年前物理学公认的理论,电子绕原子核运转会不断地以电磁波(光)的形式发射出能量。由于不断发射能量,电子将沿着一条螺旋线状轨道向原子接近,最后会落到原子核上,导致整个原子将毁灭。

1900年物理学中出现了一个新的理论,德国物理学家普朗克(M.Planck,1858~1947)提出量子论。按照这个论说,能量的吸收和辐射是不连续的,而是一小份一小份地进行的,这一小份的能量叫做一个量子。这就把光源发光比作机关枪发射子弹那样,是一个一个光的小子弹,这个小子弹就是光量子。

丹麦物理学家玻尔(N.Bohr,1885~1962)在1913年引用这个量子论修改了卢瑟福提出的原子模型,提出下列假说:

(1)在原子中,电子不能沿着任意的轨道绕原子核运转,而只能沿一定的轨道运转,这时它完全不发射能量。这些轨道叫做稳定轨道。

(2)当电子从离核较远的轨道跳到离核较近的轨道时,原子放出能量,以电磁波(光)的形式发射出来,能量的大小决定于电子在跳动前后所处的两个轨道的半径。

玻尔的原子模型为化学家解释分子结构和化合过程提供了依据,但是物理学家们不满意,它不能解释原子所表现的一些物理现象。

1925年德国青年物理学家海森伯(W.Heisenberg,1901~1976)指出,不可能指定一个电子某一时刻在空间所占的位置或追寻它在轨道上的行踪,因而无权假设玻尔的行星式轨道的确是存在的。海森伯导出的数学方程式表明,不可能设计出一种实验方法,既能同时准确地测量粒子的位置,又能同样准确地测量粒子的动量。

同时法国青年物理学家德布罗伊(L.de Broglie,1892~?)提出电子具有波粒二象性,这是一个大胆的设想。在物理学中从17世纪后半叶开始就争论着:光是波还是粒子?到20世纪初,1905年人们开始认识到光有波粒二象性,现在电子也被认为具有波粒二象性了。

1926年,德国物理学家薛定谔(E.Schrdinger,1887~1961)应用一种波动方程的数学形式描述了电子绕原子核的运动。按照这个方程的解,得到的也不是电子的精确位置,只是在某一特定空间体积内找到电子的几率的三维图像。

几率是数学中的一个概念,又称或然率或概率。在人类社会和自然界中,某一类事件在相同的条件下可能发生,也可能不发生,这类事件称为随机(会)事件。不同的随机事件发生的可能性的大小是不同的,几率就是用来表示随机事件发生的可能性大小的一个量。例如,在一个口袋里装两个黑球、一个白球和一个红球,这4个球的大小、形状和重量完全一样,在从袋中取任一个球时,取得白球的几率为1/4,取得红球的几率也是1/4,而取得黑球的几率则为1/2。

这个三维图像说明电子并不处在任何一确定的轨道上运动,而是在原子核外一定范围内高速运动。在一定的时间里,一给定电子在有的地方出现的几率较大,在有些地方则较小。如果把一个电子在原子核外各个瞬间出现的位置用照相机拍摄下来,再把多次拍摄的照片重叠在一起来看,在原子核外就像笼罩着一团电子云。这就是现今的原子结构的电子云概念。

在电子云中,有一个几率达到最大的区域,就是电子密度最大的区域。用一条线把可能找到电子几率最大的区域包围起来,就具有一定的三维形状。不同的线代表不同的电子能级,也就是我们化学课本中所说的电子层。