神话里有个仙人,他有一个神奇的宝盆,装进石子就能变成金子;童话里有个仙女,她有一个神奇的手指,能点石成金;……这些当然都是人们编造出来虚无飘渺的故事。
然而,在数学王国里,却真有一只神奇的会下金蛋的母鸡……那是在300多年前的法国。
当时巴黎有一位律师,名叫皮埃尔?费尔马,是一个数学爱好者。他把毕生的业余时间都用来研究数学,并且在许多数学领域里做出了开创性的贡献,被人们称为“业余数学家之王”。
费尔马性情好静,不喜欢写书和发表论文,但是喜欢在钻研别人的著作时,在书页的空白处随时写下问题,记下心得。
1637年,费尔马在巴黎买了一本古希腊数学家丢番都的著作《算术》的拉丁文译本。他在这本书第2卷的“将一个平方数分为两个平方数”旁边的空白处写了一段话:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。关于这个结论,我确信已经发现了一种美妙的证明方法,可惜这里空白的地方太小,写不下。”
当然,这段话是费尔马死后,人们为编辑、整理他的论述而查阅他的书籍时发现的。
但是,谁也没有见到过这个“美妙的证明”。费尔马的儿子整理了他的全部遗稿和书信,都没有找到那个“美妙的证明”。
后人把费尔马写在书页空白处的那个结论叫做“费尔马猜想”或“费尔马问题”,但更普遍的是称之为“费尔马大定理”。用数学术语表达费尔马大定理就是:“当n是大于2的整数时,方程xn+yn=zn没有非零的整数解。”
费尔马大定理的证明激起了许许多多数学家的兴趣,高斯(“数学王子”)和欧拉(18世纪最优秀的数学家)都为证明它而花费了巨大的精力,但都没有解决。人们惊呼:费尔马大定理的证明实在太难了!它简直是在向人类的智慧挑战!
为了鼓励人们解决这道难题,许多国家的科学院曾设立多种奖金。17世纪末,德国一个城市的科学家和市民募捐了10万金马克,准备奖给解决这个难题的人,但没有得到结果;19世纪中,法国科学院两次设立3千法郎奖金,也没有得到结果;1908年,德国哥廷根科学院设立奖金10万马克,限期100年,向全世界征求费尔马大定理的证明,到现在为止,仍然没有看到完全的证明!
300多年来,一代一代数学家为了显示人类的智慧,揭示难题背后的数学真理,不断地创造新颖的数学方法,无意中创立和发展了新的数学分支,推动了整个数学的发展,这个意义远远超过了解决这个难题的本身。
1900年8月6日,第2届国际数学家大会在巴黎开幕了。8月9日,德国大数学家希尔伯特向到会的200多名数学家,也是向国际数学界提出了23个问题,这些问题当然都是非常非常难的,是新世纪里数学家们应当解决的。人们奇怪地问希尔伯特,为什么不把费尔马大定理列入这23个问题中去?希尔伯特意味深长地说:“如果我能解决这个问题,我将回避而故意不解决,这是因为我们应当更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。”
希尔伯特把费尔马大定理比作“经常为我们生出金蛋的母鸡”,说明追求一个难题的解决,往往会使人们闯入新的领域里去。例如,德国数学家库麦尔(1810~1893)在研究费尔马大定理的过程中,创立了重要的数学概念——理想数,同时开创了一门崭新的数学分支——代数数论(1884),在现代数学中,代数数论仍然是十分活跃的领域,因为数学家们认为,库麦尔因此而创立的代数数论比费尔马大定理本身还重要得多!
“光阴似箭,日月如梭”,转眼就到了20世纪90年代,证明费尔马大定理的工作也不断取得进展。“说时迟,那时快”,历史的指针指向了公元1993年,距离德国哥廷根科学院1908年悬赏10万马克征求费尔马大定理的证明的100年有效期限,只有短短的14年了!这时,在向费尔马大定理进军的征途中,传出了震惊世界的消息:1993年6月23日,在英国剑桥大学举行的一次小型数学学术会议上,四十多岁的威尔斯(A.Wiles)博士在连续3天的学术报告结束时宣布:他已证明了费尔马大定理!几小时内,费尔马大定理获得证明的消息传遍四方,震惊了国际学术界。
威尔斯出生于英国牛津,小时候听说过“一只会下金蛋的母鸡”故事后,就对费尔马大定理着了迷,立志征服这座无人登顶的数学王国的高峰。就是这条奇妙的定理将他引入数学的殿堂,他选择“数学”作为他的职业。儿时的梦想,虽然带有绚丽的光环,但是,对于已成为数学家的威尔斯博士来说,却是一个耀眼的灯塔,他拟订了一套切实可行的研究方案来实现他童年的梦想——证明费尔马大定理。不过,所有这些研究工作都是极其秘密地进行的,就是在他宣布证明了费尔马大定理的学术会上,人们开始也未能察觉到他报告的最终目标。
威尔斯的工作公布后,很快受到了国际上一些最著名的数学家的喝彩,大多数人认为威尔斯是一位严肃的数学家,他的证明基础是可靠的。
人们正翘首期盼着欢呼费尔马大定理获得证明的最后时刻的到来!
但是,1993年12月4日,威尔斯教授宣布,他于6月对费尔马大定理的证明中“有漏洞”。所以,费尔马大定理仍在证明中!(见《中国数学会通讯》1994年第二期)读者同学,你看了这个故事,有什么想法呢?
让我们听听数学大师希尔伯特的一番话:“正如人类的每项事业都追求确定的目标一样,数学研究也需要自己的问题。正是通过这些问题的解决,研究者锻炼其钢铁意志和力量,发展新方法和新观点,达到更广阔和自由的境界。”
我们了解一些数学问题的历史和意义,可以提高对数学的认识,可以激励自己像前人那样顽强学习,为人类进步事业作出贡献。