早在1898年,法国人弗勒特切尔从打气筒给自行车打气这件经常遇到的小事中受到了启发。打气筒一拉一推的简单动作,为什么不可以让上下起伏的海浪来干呢?他设计了一个带着圆柱筒的浮体,用海浪上下运动压缩圆柱筒内的空气。压缩空气不是给自行车打气,而是去吹一只哨笛,让它发出如同老牛低吼的声音。人们把这种东西安装在航行有危险的地方,警告来往船只。这就是海上“警笛浮标”,或称为“雾号”,它是人们直接利用海浪能的初级形式。在雷达和无线电导航还没有诞生和普遍应用的年月,尤其在伸手不见五指的大雾中,低沉浑厚、略带咽音的雾号,引导船舶避开浅滩绕过暗礁,在导航和发布大浪警报方面立下了不小的功劳。自那时起,在法国沿岸,世界各海区,以及中国有些地方都陆续地装置了这种雾号。
既然海浪在圆柱筒内造成的压缩空气可以吹响哨笛,为什么不可以驱动汽轮发电机发电呢?实现这个设想的第一个人是法国的波拉岁奎。他于1910年在法国海边的悬崖处,设置了一座固定垂直管道式的海浪发电装置,并获得了一千瓦的电力。这一成功大大地鼓舞着热心于海浪发电的人们。自此之后,各种设想大胆、原理正确、结构巧妙、形式各具风格的海浪发电装置的设计如雨后春笋不断涌现。
1964年,日本制成了世界上第一盏用海浪发电的航标灯。虽然这台发电机发电的能力仅有60瓦,只够一盏灯使用,但十多年来,它运行良好可靠,几乎没有发生过什么故障,借着波浪的动力,像一颗耀眼的明珠,在茫茫的大海里为夜航的船只指引着前进的方向。
波浪发电装置不消耗任何燃料和资源,没有任何污染,和水力发电、潮汐发电一样,也是一种洁净的发电技术。它不但可以作为航标灯和灯塔的电源,对于那些无法架设电线的小岛来说,这种不占用任何土地,只要有波浪就可发电的方法,更会给岛上居民带来福音。
上面我们已提到了打气筒对波浪发电的启示。因此它的原理很简单,就是利用波浪一起一伏的上下垂直运动,推动装有活塞的浮标,这个浮标就像一个倒装的打气筒。打气筒是人从上面一下一下地压活塞,而浮标则是从下面借波浪的起伏运动一下一下地向上推活塞。由活塞与浮标的相对运动产生的压缩空气就可以推动涡轮机,并带动发电机发电了。
第一座波力发电机装置问世以后到如今,世界上已有几百台这种发电装置加入了为人类服务的行列。
1978年6月25日,世界上最大的一座波力发电装置在日本的海上建成了。
老远看上去,这座波力发电装置就像一艘停泊在海上的油轮,举起手中的望远镜,你会清楚地看到,船头上有“海明号”的大字在阳光下闪着金辉。
严格说来,“海明号”并不是船。船有底,“海明号”却没有底,只是一个体长80米,高五米,宽12米的浮动设备,就像一个很大很大的没有盖的箱子,扣在海面上。
这种箱子就是空气箱,也叫空气室,整个“海明号”,就是由22个空气室组成的,每两个空气室上装着一台空气涡轮机。波浪上下起伏着,不断地压缩箱内的空气,像打气筒一样,通过高速喷出的空气,使空气涡轮机转动,再带动发电机发出电来。
“海明号”上有11台发电机为人类贡献电力,每台装机容量为2000千瓦。算算看,如果按每户人家平均用电200瓦计算,“海明号”就可供给一万户人家用电的需要。一个有一万户人家的岛屿,可不算个小岛了。
最近,日本又提出了一个新的“海明”实验计划。他们考虑把“海明号”
的长度由80米增加到110米,把每台发电机的功率由125千瓦增加到250~500千瓦,比现有“海明”号的发电能力至少提高了一倍以上。人们要让波浪作出更大的贡献。
这种波力发电装置,还有一个优点,即它在发电过程中要吸收一部分波浪,把大浪变成小浪,小浪则变成微波,起到了消波的作用。人们设想,只要把几条“海明”号首尾相连,海上就自然形成了一道人工防波“堤”,到那时,任凭“堤”外波涛汹涌,“堤”内却是风平浪静,不但保护了海岸不受冲刷,还可以发展海洋渔业和海洋养殖事业,甚至可以考虑海上工厂和海上机场的综合利用呢。
“海明号”虽然给人们带来了光明和希望,但这种发电方式还存在着不少问题。它只能利用海浪上下波动的力来发电,而波浪越高,所涉及的范围就越大,因此,单位面积上这种力就比较小,不利于大规模发电。更何况这种发电装置还需要长期在海洋上经受狂风恶浪的袭击,必须考虑它本身和上面一切设备的安全。
另一方面,海上狂风恶浪虽然可怕,但它却能够推动涡轮机发出电来。
如果不见海上风浪起的时候,这种波浪发电装置会不会英雄无用武之地呢?
尽管这是不可能的,但科学家必须考虑在各种大小波涛的情况下,使它所发出的电力符合使用的条件,比如说电压和频率都在正常使用范围。
为了解决上述问题,科学工作者正在着手各种波力发电的新尝试。
直接波力发电就是其中之一。为了直接利用海浪的冲击力来发电,就必须把天然的浪头抬高。人们设想在距海岸1000米、水深10米左右的海上筑起两道墙就可以了。
这种面向大海建造的高墙叫集波墙,从高空往下看时,像个“V”字形的喇叭。喇叭口外的海上波浪,虽然有时并不高,但当它涌向集波墙时,就会因为喇叭里的断面越来越小,道路越来越窄,而使波浪越挤越高。比如说口外的波高开始只有一米,到了喇叭的尽头,一下子就会升高到10米左右,把小涛变成了巨浪。
集波墙的尽头,安装着水泵制动杆,靠高大的波浪推动制动杆,像平时我们见到的机井,把海水提高到高压水槽里贮存起来;或者,像炉口的风箱,把空气压进高压气罐里备用。
有了高处的水,或有了压缩空气,我们就可以非常方便地来发电了,而且,这种电力决不会受到波浪高低的影响,发电能力稳定,发电设备也无需经受大风大浪的考验。
直接波力发电装置,目前还只是日本科学家的一种设想,他们感到在波涛汹涌的海面上建造长期受波浪冲击的海上建筑物,困难实在太大了,但是,随着海洋建筑技术的发展,这个问题是会很容易解决的。
波力发电的另一种尝试,是环礁式海浪发电站,这是美国科学家提出的新设想。
环礁,是礁石的一种,只不过在海上显现出来的是一个圆圈,宛如沉在海里的一个大大的木盆,只在水面上露出一个盆沿儿。
你注意过这种现象吗?当我们把水沿着圆桶边倒进去,或者,用木棒搅动桶里的水时,就会看到水在沿着一个方向转动,中心部分则成了一个漩涡。
人们在观察海浪冲击环形礁群时,也发现海浪并不直接拍向环礁的中心,而是绕着整个环礁,从四面八方沿着螺旋形的路线涌到环礁的中心,并且在中心部位形成涡流,仿佛用木棒搅着似的。
这种涡流就是一种能源。它可以推动水轮机的叶片,使水轮机带着发电机一起飞快转动而发出电来。
不过,天然的理想环礁在地球上恐怕是太少了,怎么办呢?美国的两位工程师根据这个原理设计了人工环礁式的海浪发电站。
人工环礁式海浪发电站的形状很奇特,海面上只看到一个圈儿,直径有10米,似乎并不大。当你潜入水下再一看,可不得了,比海面上看到的大多了。它像是个大大的圆形屋顶,又像是一个特别的瓷饭碗扣在水里。这个“瓷饭碗”的边,直径达76米,相当于一个正规足球场的大小。它的名字叫导流罩,可以更好地把波浪螺旋式地导向中心。“碗”无底,立着一根空心的圆筒,有20米高。圆筒里装着水轮机,它在筒内涡流的推动下转动,再带动安装在顶部的发电机发出电来。
由这种形状奇特的导流罩,我们就可看出这种发电装置可以全方向工作,也就是说,不论海浪以何种方向进入装置,圆筒里都能产生涡流,水轮发电机都可以正常运转。
在英国,采用的是“点头鸭”式波力发电装置,也叫索尔特凸轮式发电装置。这种发电装置像一只浮在水面上的鸭子。它的“胸脯”对着海浪传播的方向,随着海浪的波动,像不倒翁一样不停地来回摆动,利用摆动的能量,带动工作泵推动发电机发电。它可以使波浪能量的90%转变成动力,机械效率特别高。将很多个凸轮一字排列在海面上组成一个列阵,就可以提高发电能力。
不过,对于波浪发电来说,这种装置也好,那种装置也好,它们有一些比较共同的技术问题还有待于进一步研究解决。比如,发电装置的容量是要与波浪力的大小相匹配的,要做到选择恰当,出电稳定,就必须具备比较准确的波浪资料。然而目前有关波浪的资料大多来源于沿海航运或近海石油工业以及一些沿海气象站,对中距离水域的资料收集得却很少,而恰恰是这些水域才是建立波力发电站的合适位置,必须把这些地区的资料健全起来。
再者,波力电站要发出大的电力,发电装置就必须做得很大,带来的问题是在波浪冲击下,这些结构强度行不行?漂浮在海上的锚系牢不牢?能不能抗御得了恶劣天气?此外,波浪发电构件的材料能否耐腐蚀、耐疲劳?等等。这些问题都需要研究,需要很好地解决才行。
多年来的实践证明,波浪发电是一种可靠的电源,因此许多国家正在扩大研究,特别是英国和日本,进展较快。但是,波浪发电也存在一个经济效益差的问题。例如,到1980年底,日本和其他国家共拥有400台60瓦的小型波浪发电装置,每台年平均发电量为50-100度,平均投资约1500美元,如使用寿命为15年,则每度电的费用在一美元以上,比潮汐发电还要贵十多倍。更不能与普通电站相比了。这就是波浪发电至今还不如潮汐发电进展得快的基本原因。
为了使波浪能发电均匀、成本降低,今后的主攻方向要放在研究多个空气活塞的组合方法、惯性轮法以及收集幅度较大的波浪设备上。目前,科学家正在考虑用火焰喷射的方法在海岸岩石上打洞,作为空气活塞室,扩大空气活塞室的面积,安装大功率的波浪发电装置,建立固定式波浪电站。这不是一种幻想,21世纪,一个崭新的世纪,各种美好的设想一定会成为现实,波浪发电站一定会大放异彩。
从20世纪60年代起,我国就有单位开始了海浪发电的研究,并已获得了海上试验的成功。1982年8月,我国研制的航标用波浪发电装置通过鉴定。该装置在直径为2.4米的航标上,在平均波高为0.5米、平均周期为3秒的情况下,就能满足航标灯的用电需要。目前长江口使用的就是该装置。
我们相信,21世纪,波浪发电将作为一种新方式,登上电力工业的舞台,为人类作出巨大贡献。
海流发电的现在和未来
在前面我们讲到了海流对气候、渔业和航行的影响,那么,海流是否有其他巨大的作用呢?
在能源紧缺的当今世界里,人们自然而然地对海流的巨大能量发生了十分浓厚的兴趣。用海流发电不必像潮汐发电那样需要修筑大坝,担心泥沙淤积,也不像波浪发电那样电力输出不稳定。科学家估计,世界大洋中所有海流的功率在十亿千瓦以上,这是个多么惊人的数字,难怪人们会为之振奋。
就说距我们最近的黑潮暖流吧。这支世界著名的海流宽度达180千米,如果设想从此岸到彼岸架设一座桥梁的话,可能从南京上桥,要走到上海才能下得桥来。黑潮暖流的厚度也很可观,不像河流是以几米深或几丈深来衡量的,它在台湾东部的厚度就达到700米左右,平均厚度也在400米以上。
如此巨大的海中之河,平均日流速是50~148千米,输送的水量就更大了。
科学家计算过,仅仅是黑潮暖流的流量,就相当于全世界所有陆地河流流量总和的20倍。
日本,自1893年和田雄沼博士用海流瓶调查黑潮开始,到如今已有百多年黑潮研究的历史。他们估计,黑潮中蕴藏的动能大约相当于每年发出1700亿度的电力。虽然黑潮暖流全程上流动的速度不同,但仅流速大于1米/秒的流域所蕴藏的动能就能转化为900亿度电。900亿度电力!这绝不是一个简单的数字。想想看,如果这900亿度电改由燃煤的热电厂来生产的话,非得6500万吨煤炭不行。而这6500万吨煤炭,由矿山采掘得多少天?用火车来拉又得拉多少趟啊!还有,烧完以后的煤渣怎么处理?还得要多少车皮才能拉得出去呢?燃烧后造成的污染对环境的影响呢?这些生动的数据向我们说明,海流对于人类来说,确实是一种不可忽视的能源。
科学家认为,日本可以从黑潮里获得海流能的海域有四个地区,分布在八重山诸岛海域、吐噶喇列岛海域、足摺岬海域及八丈岛海域,可能发电量达376.4万千瓦。
北美大陆东侧的佛罗里达海流,蕴藏的海流能约5000万千瓦。科学家说,只要利用其中4%的能量来发电,就可以建造一座具有中国葛洲坝规模的发电站来。
海流发电要比利用陆地上的河水可靠得多。河流水量忽多忽少,除了洪水的威胁,更直接受到枯水季节的影响,因此,河流水电站非但不能全年工作,即使全天工作的时间也很有限。海流则根本不会出现这种问题,那几乎全年不变的水量和一定的流速,完全可以成为人类所信赖的可靠能源。
海流发电装置的基本形式,与风车、水车相似,风车是靠风吹着转动的,海流发电则是依靠海流的冲击力使水轮机的螺旋桨旋转,然后再变换成高速,带动发电机发出电来。