1970年,美国康宁玻璃公司的三名科研人员马瑞尔、卡普隆、凯克成功地制成了传输损耗每千米只有20分贝的光纤。也就是说用它和玻璃的透明程度比较,光透过玻璃功率损耗一半(相当于3分贝)的长度分别是:普通玻璃为几厘米、高级光学玻璃最多也只有几米,而通过每千米损耗为20分贝的光纤的长度可达150米。这就是说,光纤的透明程度已经比玻璃高出了几百倍!在当时,制成损耗这样低的光纤可以说是惊人之举,这标志着光纤用于通信有了现实的可能性。
新一代多模光纤
1970年,激光器和低损耗光纤,都取得了关键性的突破。使光纤通信开始从理想变成可能,这立即引起了各国电信科技人员的重视,他们竞相进行研究和实验。1974年美国贝尔研究所发明了低损耗光纤制作法——CVD法(汽相沉积法),使光纤损耗降低到1分贝/公里;1977年,贝尔研究所和日本电报电话公司几乎同时研制成功寿命达100万小时(实用中10年左右)的半导体激光器,从而有了真正实用的激光器。1977年,世界上第一条光纤通信系统在美国芝加哥市投入商用,速率为45Mb/s。
单模光纤
从理想步入现实,光纤通信的发展极为迅速,应用的光纤通信系统已经多次更新换代。20世纪70年代的光纤通信系统主要是用多模光纤,应用光纤的短波长(850纳米)波段,(1纳米=1000兆分之一米)。80年代以后逐渐改用长波长(1310纳米),光纤逐渐采用单模光纤,到90年代初,通信容量扩大了50倍,达到2.5Gb/s。进入90年代以后,传输波长又从1310纳米转向更长的1550纳米波长,并且开始使用光纤放大器、波分复用(WDM)技术等新技术。通信容量和中继距离继续成倍增长。广泛地应用于市内电话中继和长途通信干线,成为通信线路的骨干。
1876年,贝尔发明了电话,成为世界通信史上的里程碑,这场革命至今仍未终止。
在贝尔发明电话以前,电报是最快捷的通信方式。而电报这个通讯方式也刚刚问世不久,在这之前,紧急信息只能由驿马、烟火信息、鸽子或船只传送。19世纪70年代,许多人都在致力于改进电报,而贝尔具有得天独厚的优势。作为一个年轻人,贝尔献身于帮助聋人的事业,并企图通过改进电报来得到大笔财富。在实验中,他听见一个震颤声沿着电线从一个房间传到另一个房间。如果其他发明者听到同样轻微的声音,他们几乎不可能理解其重要意义。而贝尔对人类耳朵的震动原理有着充分的了解,他立即发现通过电线传递人类的声音是可行的,电话诞生了。10年之内它遍及美国,很快又传遍全世界。
当今社会是一个信息社会,我们可以很迅速地接收到来自全球任一角落的信息。
18世纪30年代,铁路飞速发展,迫切需要一种不受天气影响、没有时间限制又比火车跑得快的通信工具。此时,发明电报的基本技术条件(电池、铜线、电磁感应器)也已具备。1837年,英国库克和惠斯通设计制造了第一个有线电报,且不断加以改进,发报速度不断提高。这种电报很快在铁路通信中获得了应用。他们的电报系统的特点是电文直接指向字母。
美国人莫尔斯也萌发了发明电报的奇特思想。他是一位画家,凭借了他丰富的想象力,不屈不挠的奋斗精神,实现了许多人梦寐以求的目标。在他4l岁那年,他从法国学画后返回美国的轮船上,医生杰克逊将他引入了电磁学这个神奇世界。回美国后,他全身心地投入到研制电报的工作中去。1844年5月24日,莫尔斯电报获得成功,轰动了全世界。19世纪后半叶,莫尔斯电报已经获得了广泛的应用。但是莫尔斯电报也有其缺点,就是从发报人到收报人需利用专门的电码译本经过两次翻译才能把信息传递过去,而且发报人不能立即获得收报人的反馈信息。这就使通信仍然不够方便。所以在欧美掀起了一股竞相发明电话机的热潮。
贝尔原是一个语音学教授。他在研究一种为耳聋者使用的“可视语言”的实验中意外发现了一种新现象:当切断或接通电流时,电路中螺旋线圈会发出轻微的沙沙声,就像莫尔斯电报的滴答声一样。贝尔注意到了常人根本不在意的细节,又反复试验了很多次。受这一现象的启发,贝尔的脑海里逐渐浮起了一个新奇的想法:先设法将发声的空气振动变成电流的连续变化,再用电流的变化模拟出声音的变化。这就是发明电话的初始原理。但是,怎样实现“从声音变化到电流变化”,又“从电流变化到声音变化这两个转化”呢?贝尔请教了电学界的几位能人,有的人一笑置之,有的劝他放弃幻想。这种境况反倒坚定了贝尔的信心,他决心从头学习电学。他向著名物理学家亨利请求帮助。在亨利的鼓励下,贝尔和年轻的助手沃特森在简陋的实险室进行了无数次的实验。终于取得了成功,贝尔的电话机问世了。
电话在今天已成为人们日常生活中必不可少的通信工具。电话的种类亦名目繁多,但电话的基本原理仍然没有改变。当我们回首当年莫尔斯、贝尔等先驱者首创电报、电话的艰难历程时有何感想呢?对我们今天即将参与的研究性学习有什么启示呢?
首先让我们想起了马克思的名言:“在科学上没有平坦的大道,只有不畏艰险沿着陡峭山路攀登的人,才有希望达到光辉的顶点。”“在科学的入口处,正像在地狱的入口处一样,必须提出这样的要求:这里必须杜绝一切犹豫,这里任何怯懦都无济于事。”
电报、电话的发明,同千千万万新事物的发明一样,是一个将思想变为现实的过程,是把人们的设想化为实物的过程,也就是创造新事物的过程。在这一点上,科学的发明与科学的发现不同。无论是科学发明还是科学发现,都需要人们有不畏艰险、勇于攀登的精神,都需要人们作出艰苦卓绝的努力,才能取得成果,才能“达到光辉的顶点”。
人类的想象力和创造力是无止境的,人们经过艰苦的探索,掌握了光纤通信的奥秘,把地球用一束束的玻璃丝牢牢地裹起来以后,人们又把目标盯在了地球之外的宇宙空间,这就是宇宙激光通信。由于宇宙空间没有大气或尘埃,激光在那里传输时比在大气中的衰减小得多,因而激光用于宇宙通信既优越又经济,这受到各国的普遍重视,现在已经有大量的科学家投身到了这个研究领域。
我们从光通信的发展过程来看,不难发现,人们使用过的光通信的传输媒质有大气、水、液体纤维导管、玻璃纤维、光缆,甚至还在尝试使用外层空间;用于光通信的波长范围从红外线、可见光到高频射线。人类孜孜不倦的尝试和丰富的想象力启发我们:我们总可以找到比以前更好的传输媒质!我们也可以充分利用电磁波广阔的频谱!
应该认识到,人类的发明和创造通常是建立在对前人认识成果的改造和创新的基础之上的,尽管当前光通信传输领域占主导地位的是光纤,但是这并不意味着其他方式被淘汰了,只要展开自己想象的翅膀,我们依然能够找到更好的传输媒质,当然我们也可以考虑将以前尝试过的传输媒质进行新的加工,从而获得比光纤更优越的传输性能。比如人类正在探索的宇宙光通信,它的身上不也闪烁着贝尔光电话的灵感之光吗?
在20世纪70年代,国外的低损耗光纤获得突破以后,我国从1974年开始了低损耗光纤和光通信的研究工作,并于70年代中期研制出低损耗光纤和室温下可连续发光的半导体激光器。1979年分别在北京和上海建成了市话光缆通信试验系统,这比世界上第一次现场试验只晚两年多。到80年代末,我国的光纤通信的关键技术已达到国际先进水平。
从1991年起,我国已不再建长途电缆通信系统,而大力发展光纤通信。在“八五”期间,建成了含22条光缆干线、总长达33000公里的“八横八纵”大容量光纤通信干线传输网。1999年1月,我国第一条最高传输速率的国家一级干线(济南—青岛)8×2.5Gb/s密集波分复用(DWDM)系统建成,使一对光纤的通信容量又扩大了8倍。