函数概念最初产生于17世纪,这首先应归功于解析几何的创始人法国数学家笛卡儿,但是,最早使用“函数”一词的却是德国数学家莱布尼茨。尽管人们早已在不自觉地使用着函数,但究竟什么是函数,在很长一个时期里并没有形成一个很清晰的概念。大数学家欧拉曾认为“一个变量的函数是一解析表示,由这个变量及一些数或常量用任何规定方式结合而成”。与此同时,欧拉把“用笔画出的线”也叫做函数。到了19世纪,函数概念进一步发展,逐渐发展为现代的函数概念,俄国数学家罗巴切夫斯基最早较为完整地叙述了函数的定义,这时已经非常接近于当今在中学数学课本中所看到的定义了。现代意义上的函数是数学的基础概念之一。在物质世界里常常是一些量依赖于另一些量,即一些量的值随另一些量的值确定而确定。函数就是这种依赖关系的一种数学概括。一般地,非空集合A到B的对应集为函数(或映射),如果f满足:对任意A中元素a,在B中都有一个元素[记为f(a)]与a对应。
函数在人们的日常生活中是很常见的,比如经常会看到类似这样的统计数字:某护士每小时量一次病人的体温,可以将6小时所得的结果制成下表:小时123456温度37.1℃38℃37℃39℃38℃37.2℃这就是一种函数关系。函数关系不一定很有规律,当然也不一定非得用规则的表达式表示出来,实际上,更多的函数是不能用表达式表示出来的。在中学阶段,同学们主要学习的函数都是非常简单和有规律的,比如初中学习的正比例函数(y=kx,k≠0)、反比例函数(y=kx。k≠0)、一次函数(y=kx b,k≠0)和二次函数(y=ax2 bx c,a≠0)。函数可以用图像直观地表示出来,我们经常看到用“直方图”表示的函数。
在学习过程中,同学们更多地使用“描点法”来描绘函数的图像,即将满足函数方程的点逐一在直角坐标系中描绘出来,从而得到函数的图像。数与形的结合是研究函数的有效的手段。