书城科普读物必听的数学之谜
29311100000086

第86章 拓扑学是如何发现的

哥尼斯堡有一条河,叫勒格尔河。这条河上,共建有七座桥。河有两条支流,一条叫新河,一条叫旧河,它们在城中心汇合。在合流的地方,中间有一个小岛,它是哥尼斯堡的商业中心。

哥尼斯堡的居民经常到河边散步,或去岛上买东西。有人提出了一个问题:一个人能否一次走遍所有的七座桥,每座只通过一次,最后仍回到出发点?

如果对七座桥沿任何可能的路线都走一下的话,共有5040种走法。这5040种走法中是否存在着一条既都走遍又不重复的路线呢?这个问题谁也回答不了。这就是著名的“七桥问题”。

这个问题引起了著名数学家欧拉的兴趣。他对哥尼斯堡的七桥问题,用数学方法进行了研究。1736年欧拉把研究结果送交彼得堡科学院。这份研究报告的开头是这样说的:

“几何学中,除了早在古代就已经仔细研究过的关于量和量的测量方法那一部分之外,莱布尼兹首先提到了几何学的另一个分支,他称之为‘位置几何学’。几何学的这一部分仅仅是研究图形各个部分相互位置的规则,而不考虑其尺寸大小”。

从欧拉这段话可以看出,他考虑七桥问题的方法是,只考虑图形各个部分相互位置有什么规律,而各个部分的尺寸不去考虑。

欧拉研究的结论是:不存在这样一条路线!他是怎样解决这个问题的呢?按照位置几何学的方法,首先他把被河流隔开的小岛和三块陆地看成为A、B、C、D四个点;把每座桥都看成为一条线,这样一来,七桥问题就抽象为由四个点和七条线组成的几何图形了,这样的几何图形数学上叫做网络。于是,“一个人能否无重复的一次走遍七座桥,最后回到起点?”就变成为“从四个点中某一个点出发,能否一笔把这个网络画出来?”欧拉把问题又进一步深化,他发现一个网络能不能一笔画出来,关键在于这些点的性质。

如果从一点引出来的线是奇数条,就把这个点叫奇点;如果从一点引出来的线是偶数条,就把这个点叫做偶点。

欧拉发现,只有一个奇点的网络是不存在的,无论哪一个网络,奇点的总数必定为偶数。对于A、B、C、D四个点来说,每一个点都应该有一条来路,离开该点还要有一条去路。由于不许重复走,所以来路和去路是不同的两条线。如果起点和终点不是同一个点的话,那么,起点是有去路没有回路,终点是有来路而没有去路。因此,除起点和终点是奇点外,其他中间点都应该是偶点。

另外,如果起点和终点是同一个点,这时,网络中所有的点要都是偶点才行。

欧拉分析了以上情况,得出如下规律:

一个网络如果能一笔画出来,那么该网络奇点的个数或者是2或者是0,除此以外都画不出来。

由于七桥问题中的A、B、C、D四个点都是奇点,按欧拉的理论是无法一笔画出来的,也就是说一个人无法没有重复地走遍七座桥。

都可以一笔画出来,但是(4)中的奇点个数为4,无法一笔画出。

如果图中没有奇点,可以从任何一点着手画起,最后都回到起点,如果图中有两个奇点,必须从一个奇点开始画,到另一个奇点结束。

欧拉对哥尼斯堡七桥的研究,开创了数学上一个新分支——拓扑学的先声。