书城教材教辅头脑充电大本营
32214900000020

第20章 春联中的数学

清乾隆五十年,朝廷为了表示国泰民安,曾邀集了全国有声望的老人逾千人,为他们举行了一次盛大寿宴。在宴会上,乾隆看到一位老寿星,鹤发童颜,神采奕奕,一问竟是与会者中的最长者,非常高兴,就以这位寿星的岁数为题,说出上联。座中一位博学多才的大臣纪晓岚即时对出了下联。

乾隆的上联是:花甲重开,又加三七岁月。

纪晓岚的下联:古稀双庆,更多一度春秋。

那这位寿星到底年岁几何呢?

上联中的“花甲”是指60岁,“花甲重开”就是两60,“三七岁月”是21岁,即60×2 21=141.

下联中的“古稀”指七十岁,“古稀双庆”就是两个70岁,“一度春秋”就是1年,即70×2 1=141.

米兰芬算灯

李汝珍,清代人,是个“学无所不窥”的才子,可能是学问钻研多了,所以官场上却甚不得意。他写了好几本书,《镜花缘》是流传最广的一本。此书中描写了一位精通算学的才女“矶花仙子”名叫米兰芬。

米兰芬和众姐妹在宗伯府聚会,来到小鳌山楼上观灯。楼上的灯形状有两种,一种灯是上面三个大球,下缀六个小球,一种灯是上面三个大球下面十八个小球。楼下的灯也有两种,一种是一个大球缀二个小球,一种是一大球缀四个小球。知道楼上有大灯球396个,小灯球1440个,楼下有大灯球360个,小灯球1200个。

才女们要米兰芬计算,楼上楼下的四种灯各有多少盏?

米兰芬说:“以楼下论,将小灯球数折半,得600,减去大灯球数360,即得缀四个小灯球的灯数为240,用360减240得120,即得缀二个小灯球的灯数为120.此用‘鸡兔同笼’之法。”用同样的方法算楼上灯数:“以1440折半,得720,720——396=324,324÷6=54.得缀十八个小灯球的灯数为54.用396——543=234,234÷3=78.即缀六个小灯球的灯数为78.”

这里说的“鸡兔同笼”法,是指的我国古代的一种类型题目,比如在一个笼中关有鸡与兔,数头有100个,数脚有240只。问鸡、兔各有多少?

对此题,有一个简单巧妙的算法,就是:如果让鸡都缩起一只脚,“金鸡独立”站着;让兔子全部抬起二只前腿,只用二只后腿站着,这时,再数脚数,就应是240除以2,得120只脚。

如笼中全是鸡,由于此时数鸡时,每只鸡都是一头一脚(另一脚缩起来了)。故100只鸡应只有100只脚,现在却有120只脚,多的20只脚是哪儿来的呢?原来每只兔子都要多数1只脚,这就说明兔子数是20,而鸡数则是80.

现在你明白了米兰芬的算法了吧!比如说楼下的灯,一大球下缀二小球,就相当于“一只鸡有两只脚”,一大球下缀四小球就相当于“一只兔有四只脚”。所以,用“鸡兔同笼”之法就算清楚了。

至于楼上的灯,小球数折半,就相当于把灯改制成“每灯三个大球,下缀三个小球”和“每灯三个大球,下缀九个小球”这两种。如果都是前一种灯,则大小灯球数应相等。现小球数为720(=1440÷2),大球数396,多出324个小球。是因为每盏第二种灯小灯球多出6个的原因,从而用324÷6=54,即其中有54盏第二种灯,第二种灯共用大灯球162个,故第一种灯用大灯球234个,除以3得78,就是第一种灯数了。

朋友,如果换了你来解决这道题,你又会怎么做呢?

铺地锦

前面已经介绍了,米兰芬是《镜花缘》里的一个“才女”,精通数学,在书中有不少她解数学题的故事。

有一位才女要考考米兰芬:“有一套金杯,大小一共9只,共用126两黄金打造,这些杯子从小到大每只都比前一只重同样多,且第二只是第一只重量的2倍”,她问米兰芬,“你能算出杯重吗?”

米兰芬说:“这要用‘差分之法’。”并算出这9只杯子重量依次为2两8钱、5两6钱、8两4钱、11两2钱、14两、16两8钱、19两6钱,22两4钱和25两2钱。

这里“差分之法”实际上就是现在的等差数列的计算方法。由于从第二个杯子起,各个杯子的重量分别是最小杯的2、3、4、5、6、7、8、9倍,所以,这些杯子的重量是最小杯子的。

1 2 3 4 5 6 7 8 9=9(9 1)÷2=45(倍)。

于是,最小的杯子重量为126÷45=2.8(两),以后再算出各个杯子的重量。

又有一位才女指着一张圆桌,问米兰芬:“你能算出它的周长吗?”

米兰芬说可以,她叫人拿尺量得圆桌直径为3尺2寸,然后画了一个“铺地锦”:

于是得出:圆周长为一丈零零四分八。并说周三径一是古率,不太准,较准确的数字是径一周三一四一五九二六五,(正是祖冲之计算的结果)并声明只用“大数”(较接近的近似值)三一四计算得出的圆周长。这就是说,米兰芬用3.2×3.14=10.048.

什么是铺地锦呢?

铺地锦原来是古代阿拉伯人计算乘法时用的一种方法,后来传入我国,这种算法被起了一个很好听的名字:铺地锦。你看前面米兰芬画的那个乘法图式,像不像用瓷砖铺起的地面。我们如何用铺地锦来计算乘法呢?

比如要计算34227,被乘数与乘数分别有3个与2个有效数字。就可以画一个三列二行(竖的叫列,横的叫行)的方格,并画出一系列的对角线。在方格上方写上被乘数342,每个方格上写一个数字,右方从上列下写出乘数27,然后就开始相乘:先用2分别乘以3、4、2,得到6、8、4,把这三个数字分别填在与被乘数、乘数的对应数字对齐的方格中,均填在下半格。再用7分别乘3、4、2,得出21、28、14,把这三个数依次填在相应的格子中。各个积的个位数字填在右下的半格中,十位数字填在左上的半格中,填完后,按斜线,把每两条斜线间夹的数字分别相加,和写在格子外的相应位置。如和超过10,则格子外只记和的个位数字,而和的十位数字则在上一斜线间补记上。(加圈的两个数字)在上一斜线间数字求和时,这些补记的数字也要加进去。全部加完后,从左上到右下沿格子外读数,即是所求积,即34227=9234.

这个乘法在古印度则是这样算的:

古印度算法与铺地锦在形式上虽然不同,但实质上是一样的,现代的竖式乘法则是在此基础上加以改进的结果。