书城教材教辅头脑充电大本营
32214900000082

第82章 花砖铺设问题

随着人们生活水平的提高,许多人喜欢用装饰用的花砖来铺设地面,这在数学里是一门学问,叫做平面花砖铺设问题,也叫做镶嵌图案问题,即采用单一闭合图形拼合在一起来覆盖一个平面,而图形间没有空隙,也没有重叠。什么样的图形能够满足这样的条件?

我们先来研究正多边形。先看看正方形,这是大家熟悉的图形。很明显,正方形是可以覆盖一个平面的。

再来看看正三角形,正三角形也是可以覆盖一个平面的。

正六边形也是可以覆盖一个平面,这不仅早在古希腊时就为人们所确认,而且昆虫中的蜜蜂就是用正六边形来建造蜂巢的。

为什么正方形、正三角形、正六边形能够覆盖一个平面?因为过每一个正方形公共顶点的正方形有四个,每个正方形的每个内角为90°。

4个90°正好是360°。过每一个正三角形顶点可安排六个正三角形,每个内角60°,共为360°。同样,过每个正六边形顶点有三个正六边形,每个内角为120°,三个内角正好为360°,由此可知,要使正多边形能覆盖平面,必须要求这个正多边形的内角度数能整除360°。

正五边形的每一个内角为108°,108°不能整除360°,所以正五边形不能覆盖平面,不难看出,超出六边的正多边形的每一个内角大于120°,小于180°,都不能整除360°,因此,都不可能覆盖平面。这样看来,能覆盖平面的正多边形只有正方形、正三角形、正六边形三种。

现在,我们来看看不规则的多边形能不能覆盖平面。事实上,任何不规则的三角形和四边形都可以覆盖一个平面。

那么,其他怎样的凸多边形才能覆盖平面呢?1918年,法兰克福大学一位研究生卡尔·莱因哈特曾研究过这个问题。后来发表了论文,确定五种可以拼成平面的凸多边形。例如,他提出如果五边形ABCDE的各边分别为a、b、c、d、e,且c、e两边所对的角C、E满足C E=180°,又a=c,那么这个五边形就能覆盖平面。

1975年,美国人马丁·加德纳在《科学美国人》这本杂志上开辟了关于镶嵌图案的数学游戏专栏,许多数学家和业余数学爱好者都参加了讨论。其中有一位名叫玛乔里·赖斯的家庭妇女是最热情的参与者之一。

赖斯是五个孩子的妈妈,1939年中学毕业前只学过一点简单的数学,没有受过正规的数学专业教育。她除了研究正多边形的拼镶问题以外,还研究了一般五边形。她独立地发现了一种五边形,并且向加德纳报告了这一发现:“我认为两条边长为黄金分割的一种封闭五边形可以构成令人满意的布局。”加德纳充分肯定了赖斯的研究成果,并把她介绍给一位对数学与艺术的和谐具有职业兴趣的数学家多里斯·沙特斯奈德。在沙特斯奈德的鼓励下,赖斯又发现了解决拼镶问题的另外几种五边形,而使这样的五边形达到13种。

赖斯的家务很忙,但这没有影响她研究的热情。她对人说:“在繁忙的圣诞节,家务占据了我大量的时间,但只要一有空,我便去研究拼镶问题。没人时,我就在厨房灶台上画起图案来。一有人来,我就急忙地把图案盖上。因为我不愿意让别人知道我在研究什么。”