书城科普读物数理化之谜
4412800000014

第14章 618之谜

在数学宝库中,有一颗光灿灿的明珠,被誉为“黄金分割”。在我国现行的初中几何课本中,经常讲到了“黄金分割”,它很值得我们好好学习和研究。

中外比

在已知线段AB上有一点P。如果BP∶AP=1∶1,那么P将二等分AB。即P为AB的中点。如果BP∶AP=1∶2,P将三等分AB,即P为AB的一个三等分点。如果P将AB分为大小两段,使小段与大段之比恰好等于大段与全长之比,即BP∶AP=AP∶AB,那么就叫P点分线段AB成“中外比”。著名画家达·芬奇把人体许多部位之比画成中外比,显得特别和谐美观,他称中外比为“黄金分割”。

黄金数

用代数解方程的知识可以求得中外比的比值。

设线段全长AB=a,大段AP=x,则小段BP=a-x,

于是,a-xx=xa

即x2+ax-a2=0

x-a±5a2

舍去负根,得x=5-12a

因此,xa=5-12a

这就是说,中外比的比值为5-12

中外比的比值,叫做“黄金数”,用记号g表示。请记住:

g=5-12。

由于5=2.236…所以

g=0.618。

黄金分割法

2000多年前,古希腊的柏拉图派学者欧多克斯,首先使用规尺分已知线段为“黄金分割”,他的作法如下:

1.过B点,作BC⊥AB,而且使BC=12AB;

2.连AC;

3.以C为圆心,CB为半径作圆弧,交AC于D;

4.以A为圆心,AD为半径作圆弧交线段AB于P,则P点分AB成黄金分割。

这个作法十分简便,证明也很容易。

设AB=a,则BC=a2,由勾股定理可知:

AC=AB2+BC2=a2+(a2)=52a;

AD=AC-DC=52a-a2=5-12a;

AP=AD=5-12a。

这就证明了,P点分AB成黄金分割。

这个作图方法,叫做“黄金分割法”,P点为“黄金分割点”。

辗转分割

设点P1将线段AB分成黄金分割,即

BP1∶AP1=g;

取AB中点O,作点P1关于点O的对称点P2,则点P2有下述重要性质:

1.点P2也将线段AB分成黄金分割。

这是因为:

AP2=BP1,BP2=AP1,

AP2∶BP2=BP1∶AP1=g,

所以点P2也分AB成黄金分割

由此可知,每条线段有两个黄金分割点。

2.点P2还分线段AP1成黄金分割。

证明如下:由于BP1∶AP1=g,而AP2=BP1,

所以AP2∶AP1=g,这就说明P2分AP1成黄金分割。

3.作P2,关于线段AP1中点的对称点P3,则AP3将AP2黄金分割。如此继续利用对称,辗转相割,可以得到一系列的黄金分割点。

黄金矩形

国外,有位画家举办过一次画展,所有的画面都是不同比例的矩形,有的狭长,有的正方。据统计数字表明,观众最喜爱的宽与长之比为g的矩形画面。人们称这种矩形为“黄金矩形”。

黄金矩形有个奇特的性质,如果矩形ABCD是黄金矩形,即DA∶AB=g,在它的内部截去一个正黄金矩形。这个过程继续下去,还可以得到一系列的黄金矩形。这个美妙的结论,请你自己证明吧。