《晏子春秋》里记载了这样一个故事:
齐景公蓄养着三名勇士,他们名叫田开疆、公孙接和古冶子。
这三名勇士都力大无比,武功超群,为齐景公立下过不少功劳。但他们也刚愎自用,目中无人,连齐国的宰相晏婴都不放在眼里,终于得罪了晏婴。晏子便劝齐景公杀掉他们。齐景公对晏子言听计从,但却心存疑虑,恐怕用武力制服不了三人,如果他们联合起来反抗,问题就麻烦了。晏子便献上一计:以齐景公的名义赏赐三名勇士两个桃子,让他们自己评功,按功劳的大小吃桃。
三名勇士都认为自己的功劳很大,应该单独吃一个桃子。于是,公孙接讲了自己的打虎功,拿了一只桃;田开疆讲了自己的杀敌功,拿起了另一只桃。两人正准备要吃桃子,古冶子说出了自己更大的功劳。公孙接、田开疆都觉得自己的功劳确实不如古冶子大,感到羞愧难当,赶忙让出桃子,说:“咱本领不如人家,却抢着要吃桃子,实在丢人,是好汉就没有脸再活下去!”说罢都拔剑自刎了。古冶子见了,后悔不迭。心想:“如果放弃桃子而隐瞒功劳,则有失勇士的威严;为了满足自己而羞辱同伴,又有损哥们的义气。如今两个伙伴都为此而死了,我独自活着,算什么勇士?”便仰天长叹一声,也拔剑自杀了。
这就是“二桃杀三士”的故事。
晏子采用借“桃”杀人的办法,不费吹灰之力,便达到了他预定的目的,可说是善于运用权谋。汉朝无名氏在一首乐府诗中,曾不无讽刺地写道:“……一朝被谗言,二桃杀三士。谁能为此谋,相国齐晏子!”
有趣的是,在这个故事中,晏子除了运用权谋之外,还运用了数学中一个重要的原理——抽屉原理。
抽屉原理又名鸽笼原理或狄里克雷原理。这个原理形象的说法就是:把3件物品放到2个抽屉里,一定有一个抽屉里至少有两件物品;把7件物品放到3个抽屉里,一定有一个抽屉里至少有3件物品,等等。
一般地说,把m×n+1件物品放到m个抽屉里,一定有一个抽屉里至少有n+1件物品。
这个原理虽然简单,但在数学中却有广泛而深刻的运用。19世纪德国数学家狄利克雷首先利用它来建立有理数的理论(所以现在抽屉原理又称狄利克雷原理),以后被逐渐地应用到许多不同的数学分支中,如在数论、集合论、组合论等学科中都有许多重要的应用。
1947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年全匈数学竞赛有一道试题是:“证明:在任何6个人中,一定可以找到3个互相认识的人,或者3个互不认识的人。”
这个问题乍看起来,似乎令人难以想象,感到十分玄妙而无从下手。其实,只要你懂得抽屉原理,这道题的证明是十分简单的。
为方便计,我们用A、B、C、D、E、F来代表6个人。从中随便找一个,例如A吧,其余的5个人,或者与A认识,或者与A不认识。现在把“与A认识”和“与A不认识”当作两个“抽屉”,把5个人放到这两个抽屉里,根据抽屉原理,有一个抽屉里至少有3个人。不妨假定在“与A认识”这个抽屉里有3个人,例如B、C、D在这一抽屉里。用平面上的4个点来代表A、B、C、D 4人,如果两人互相认识,就在代表它们的两点之间联一条线,于是,便得到图1:再看B、C、D 3人,如果他们3个人两两互不认识,我们就在这6个人中找到了3个互不认识的人,本题的结论已经获证。如果B、C、D 3个人中,至少有两人互相认识,例如B与C互相认识,在B、C之间就要连一条线,如图2。
这时,在6个人中就有A、B、C 3人互相认识,同样证明了问题的结论。按照一样的方法,假定在“与A不认识”这个抽屉里有3个人,同样可证明问题的结论成立。
这道试题由于它的形式优美,解法巧妙,很快引起数学界的兴趣,被许多国家的数学杂志转载,它的一些变形或推广题,不断地被用作新的数学竞赛试题。几十年如一日,半个世纪以来长盛不衰。
例如,1964年在莫斯科举行的国际中学生数学竞赛中有一道试题是:“17个学者中每个学者都与其余学者通信,他们在通信中一共讨论了3个不同的问题,但每两个学者在通信中只讨论同一个问题。证明:至少有3个学者在彼此通信中都讨论同一问题。”
这个问题就是上述问题的直接推广。
在17名学者中任取一名,例如A,其余16名学者与他通信分别讨论3个问题中的某一个。根据抽屉原理,对于3个问题x、y、z,在16人中必有6个人与A讨论某一个,例如x。如果这6个人中还有B与C两人也通信讨论x,则A、B、C三人都彼此讨论同一问题x,命题的结论获证。如果这6个人中没有任何两个人是互相讨论x的,则他们只讨论y与z两个问题。把两个讨论问题y的人看作互相认识,讨论问题z的人看作互不认识,就变成了匈牙利的那道试题。也就证明了命题的结论。
又例如,1963年北京市中学生数学竞赛有一道试题是:“边长为1的正方形中任意放入9个点,证明:在以这些点为顶点的各个三角形中,必有三个三角形,它的面积不大于18(若三点共线,则认为这个三角形的面积为零)。
如图3,用对边中点的连线把边长为1的正方形分成4个面积为14的小正方形,把9个点放进4个小正方形内,有一个小正方形里至少有三个点,它们组成的三角形的面积不大于正方形的一半即18。
现在让我们再回到“二桃杀三士”的故事。两个桃子可看作两个“抽屉”,根据抽屉原理,把3名勇士放到两个抽屉里,有一个抽屉里至少有两名勇士,即至少有两名勇士要合吃一个桃子。由于3名勇士都争强好胜,做事走极端的性格弱点,就决定了悲剧结局的不可避免,老谋深算的晏子自然就稳操胜券了。
在我国古代文献中,还有不少成功地运用抽屉原理的例子。例如,近年来迷信活动有所抬头,算命先生充满街头巷尾,“看相”、“算命”。那一套你相信吗?清朝乾隆年间的学者阮葵生在《茶余客话》中就曾利用抽屉原理来分析、批驳“算八字”之类的活动,认为这类活动是断然不可相信的。他写道:“刻下四刻论,亦止(只)一百三万六千(八百)尽之,天下之人何止千万,亦不能不同。且以薄海之遥,民物之众,等差之分,谓一日止(只)生十二种人或二十四种人,岂不谓诬?”
这段话的大意是:算八字的方法按一个人出生的年、月、日、时来排定“八字”。用六十甲子纪年,不同的年份只有60种;一年12个月,不同的月份只有12种;再用六十甲子纪日,不同的日也只有60种;一日分为12个时辰,因此,不同的年、月、日、时所组成的“八字”,总数只有60×12×60×12=518400(种)
即使每个时辰有两个小时,再分成上半时辰和下半时辰,不同的“八字”也只有518400×2=1036800(种)
把不同的“八字”看作“抽屉”,抽屉数不超过104万,而作为“物品”的人则有如恒河沙数,远远大于此。因此落在同一个“抽屉”里的人千千万万,这许多贫富、贵贱、寿夭、成败等等都互不相同的人,因为有相同的“八字”(落在同一个“抽屉”里)而不能不有相同的命运,这是何等的荒唐。再者同一天出生的人,由于出生的年、月、日已经相同,他们“八字”的差别,就只决定于出生的时辰,一天的时辰只有12种或24种(分上半时辰和下半时辰)。天下如此广大,人民这样众多,硬说同一天内只能出生12种或24种命运不同的人,岂不是胡说八道吗?所以,“算八字”之类的事是绝对不能相信的。
阮葵生的译论,即使对当前的一些迷信活动,仍然是十分有力的批判。
然而令人不无遗憾的是:我国历史上虽然有不少运用抽屉原理的具体例子,很早就留下了“二桃杀三士”之类的寓言,但却没有人将它抽象概括为一条普遍的原理,最后还不得不冠以狄利克雷的名字。学术界曾经认为,我国古代学者长于形象思维而短于抽象思维,难道这两者之间,真会咫尺天涯,“鸡犬之声相闻”,却“老死不相往来”吗?