祖冲之是我国古代著名的数学家,他在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以“径一周三”作为圆周率,这就是“古率”。
后来发现古率误差太大,圆周率应是“圆径一而周三有余”,不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法—“割圆术”,用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。
祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141592,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果的,现在已无从考查。
若设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16384边形,这需要花费多少时间、付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪明才智是多么令人钦佩……
祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=3.141592叫做“祖率”。