人是怎么产生的?人比植物、动物产生早,还是晚?现代科学告诉我们,生命的起源是通过化学途径实现的。在地球形成的初期(45亿年前左右),整个地球真可谓是“天地玄黄,宇宙洪荒”。地球表面没有大气和水,更谈不上有生物,内部也没有现在这种地壳、地幔和地核的分层,它是一个物质分布均匀的球体。
后来,在地球内部放射性元素衰变释放热能以及不同物质的重力分异作用下,一些比重大的物质如铁、镍等开始下沉,比重小的物质如硅、铝上升,逐渐形成了地球的内部分层。
于是,地球内部比重小的熔融物质在压力作用下不断向地表喷发。那时,地球表面火山遍地,岩浆横流,尘烟蔽日。一些生命必需的元素如碳、氢、氧、氮、硫、磷等的化合物,也包括大量的水蒸气随火山喷发而逸出地表飘向空中。水蒸气在空中遇冷又变成滂沱大雨从天而降,慢慢形成了最原始的江河湖海。从地下喷出的大量分散气体又开始在空中聚合组成最原始的大气圈,其成分主要是甲烷和氢,此时还没有氧气。
当时的地表景象同现在不同,到处是荒山秃岭和荒凉不毛之地。陆地上只有硬的石头,没有植物、动物,地表只有1/10是海洋。火山吐着火红的岩浆和翻卷的尘烟,海水似煮开锅一样地沸腾;暴雨冲刷着山丘,把大量的泥沙带到低凹的海洋和盆地;天空的闪电、大量的宇宙线、太阳的辐射能、陨星坠落的摩擦生热以及地球内部释放的热能,组成了变化莫测、丰富多彩的能量交响乐,形成了一个多能源的巨大反应炉,促使原始大气和地面上的物质进行分解和化合。这时大气除了甲烷和氢气外,还有二氧化碳、氨气和氮气等。
随着地球温度的逐渐下降,原来存在于岩石的结晶水由于温度升高被蒸发到空中,这时遇冷又凝结成雨,重新降落到地面,使地球上的水圈逐步扩大。同时,在地球生命的化学进化中,又逐渐生成了氨基酸、糖、有机碱(嘌呤、嘧啶)、核苷酸等低分子有机化合物,它们又溶解在水中,被河流带入海洋。而在海洋的中层,这些低分子有机物可以不受太阳辐射能(包括紫外线)和宇宙各种射线及海底放射性喷出物的影响,经过漫长的积累,发生质的飞跃,终于形成了各种高分子有机化合物,像蛋白质、核酸、多糖、类脂等。蛋白质就是多种氨基酸脱水缩合的产物,核酸就是核苷酸聚合的产物。
蛋白质和核酸对于生命的出现起着决定性的作用,有了它,作为生命的一些活动才能进行。所以说,蛋白质和核酸是生命的基本单位,是生命产生的必要条件。
蛋白质、核酸、多糖、类脂等在原始海洋(类似今天的大淡水湖),又通过蒸发、吸附、凝聚、冰冻等作用使它们浓缩形成一种更大分子量的多分子体系,多分子体系的出现是向有生命力的细胞进化的关键性的一步。多分子体系在海水和空气的作用下,形成一层最原始的膜(界膜),使它和周围的海水隔开,成为一个独立的体系。通过界膜多分子体系从外部吸收它所需要补充的物质,并且排出废物。这种物质和能量交换过程就是最原始的新陈代谢。这种有界膜的体系,通过物质交换,获得能量,不仅使它能保存下来,而且能进一步自我繁殖,这就形成了最初的生命。尽管它还不具备细胞的结构,但它是生命进化史的质的飞跃。
这批原始生命就像婴儿未出生前存在于母亲的体内一样,也是处在厌氧状态下进行新陈代谢。后来由于大自然的雷击闪电和太阳紫外线的作用,在离海面20千米~25千米的高空形成臭氧层阻止了太阳紫外线对原始生命的威胁和破坏,给生命的进化创造了条件。
大约在35亿年前,经过漫长的演化,原始生命内部构造逐渐复杂化,并且产生细胞膜代替界膜,开始出现了原核细胞。原核细胞没有完整的细胞核、复杂的内膜系统、线粒体、质体和有丝分裂器,多数以单细胞生物形式存在。
这标志着生命的化学进化已完全转变到生物学进化。原核细胞仍然在厌氧状态靠无氧呼吸获得能量和养料,又经过数亿年的进化,一些细胞产生了色素,如叶绿素,它可以利用太阳光进行光合作用,生成氧气。以后地球才出现了氧气,出现了好氧细胞和有氧呼吸。有氧呼吸产生的能量是无氧呼吸的几十倍,促使生物进一步的转化和积累。
大约在距今14亿~15亿年间产生了真核细胞,真核细胞的出现是生物进化史的又一里程碑。真核细胞的大发展,使我们的地球进入了一个生机勃勃、千变万化、丰富多彩的时期。今天世界上的生物,除细菌和低等藻类蓝藻外,其它比它们高等的植物、动物和人类都是由真核细胞组成。
这些原始的单细胞生物(如眼虫藻、鞭毛生物),最初以异养、自养方式共存(异养型生物是以摄取现成的有机物为生存手段,自养型生物能从环境中摄取简单的无机物如CO2、H2O等,并将其转化成复杂的有机物,如糖、蛋白质等)。随着外界环境中原始生物的不断增多,有机食物不断减少,加速了原始生物向自养、异养摄食方式的转化,逐渐形成植物和动物,最后发展为人类。
生命在水中诞生,在水中发展。正如19世纪最伟大的生物学家达尔文所指出的:生物的进化是由低级到高级,由简单到复杂,由水生到陆生的。地质历史时期,无论是动物还是植物,都是首先在海水中繁衍的。即使在它们进军陆地以后,也仍然离不开水。可以说,地球上凡是有水的地方,便有生命,生命和水结下不解之缘。水是生命的摇篮,是生命的起源。
水是一切细胞和生命组织的主要成分,是构成自然界一切生命的重要物质基础。我们知道,构成生物的基本单位是细胞,各种细胞都有相似的结构,它是由一种半透明的胶状物质所构成的,这种胶状物质是生命的物质基础,叫做原生质。原生质外面包着一层具有半透明的薄膜,叫做细胞膜,植物细胞的外围还有一层厚壁,叫细胞壁。在原生质中,有一个密度比原生质更大的圆球形的物质,我们称做细胞核,细胞核外面的部分叫细胞质。在细胞中,所含成分最多的是水分,它们形成液泡,它是生物体的重要组成部分。原生质的含水量通常在80%以上,水作为原生质的成分,其重要性不亚于组成原生质骨架的蛋白质和磷脂,原生质中的大分子(蛋白质、核酸等)通过和水分子相结合形成一种独特的结构。使原生质成为胶体状态,生命所依存的原生质就以此为基础。如果含水量降至某一临界水平,就会引起原生质结构的改变,最终导致死亡。但少数植物和植物器官能脱水到气干状态而丧失其生活力,有些种子和孢子甚至能耐到烘干程度的脱水状态,但是它们的生活力随着组织的含水量的下降而显著减弱。组织的含水量随生物物种而异,人与动物、植物的含水量有很大差异。人和哺乳动物含水量一般为65%~85%、鱼类70%、植物叶片为75%~85%、水果为80%~95%。即使是同一种植物,不同物种间的差异也很大,如水生植物(如浮萍、水浮莲、藕等)的含水量可达鲜重的98%;生长在岩石上的地衣含水量可低至6%;一般草木植物总体含水量为55%左右;木本植物则低于此值。同一植物不同器官和组织的含水量有很大差异。根尖、幼叶等生长活跃部分含水量较高,一般可达90%以上;草本茎的平均含水量约80%~90%;木本茎约40%~50%;树木休眠芽的含水量约为40%;成熟种子含水量较低,一般风干种子的含水量为10%左右,油料种子则更低。植物的含水量与所处环境条件有关,并表现明显的季节和昼夜变化。生长在荫蔽、潮湿处的植物,含水量常较向阳、干燥处的植物为高;春、秋季的含水量较冬季为高。用相对含水量(植物组织含水量占该组织充分吸水膨胀时含水量的百分数)和水势能较正确地反映植物的水分状况,使用较广泛。生物在发育过程中,需要大量的营养元素,如钾、钠、镁、碘等,而水分是重要的来源,是细胞组织组成中数量最大的物质。人类需要的许多元素也可以从水中获得,对于人类来说,水分除了参与物质代谢、进行化学反应之外,由于其比热很大,还能起到运输和散热、失热、调节体温的作用。
当小孩高烧39℃以上时,降温最快、最有效的方法不是吃药、打针,而是用凉水沾湿毛巾放在小孩的额头上或浑身用冷水擦洗。一个成年人在正常情况下,每天应补给的水量为每千克体重40毫升左右。当人体失去6%的水分时会出现口渴、尿少和发烧;失水10%~20%将出现幻觉昏厥,甚至死亡。对人类来说,水比食物更为珍贵。不吃食物,人的生命可维持二十几天,如不喝水,不过几天人便死亡。所以说,水是一切细胞和生命组织的主要成分,是一切生命的重要物质基础,没有水就没有我们人类,就没有植物、动物,就没有生命,水是生命的摇篮。
人类的乳汁
人们在生活中的最重要的自然资源是水。
自人类出现于世界之日起,水一直是人们生活中不可分离的伙伴。
人的一生每天从早到晚都要与水打交道:用水做饭、制饮料、洗刷物品;雨天用伞避雨水之淋;夏日在海滨休憩游玩;冬天用暖气取暖,欣赏窗户的冰花、霜和阳光下的闪闪积雪。
没有一个工业部门不用水来煮熬、净化、溶解、浸泡、加热、冷却、洗涤和结晶等。没有水,人类不可能在石器时代制造出第一批陶器;没有水,也不可能有现代的运输业和宇宙飞船。
水参与了大多数重要化学产品——碱、硝酸、氧气、氢气、酒精等的生产。
水是最古老的能源,也是永恒的能源。
在古罗马,水推动了磨坊的水轮。水蒸气推动了18世纪最早的蒸汽机的活塞。在现代化的原子能发电站、热电站和水电站,水也在工作着。水在推动着历史的巨轮向前。
农业需要水,犹如工业需要煤、铁一样。由于人工灌溉,古代文明得以在尼罗河、底格里斯河、幼发拉底河、印度河和黄河流域繁荣,创造了人类引以自豪、不朽的文明。
让我们来详述一下水对我们人类的贡献。
(1)城市诞生的摇篮
水是农业的命脉、工业的血液,是地球上一切生物赖以生存而不可替代的重要物质条件,是生产力发展不可缺少的条件,也是人类居住地——城市形成、发展和生存的重要条件。
人类文明的发展、城市的兴建都与水有着千丝万缕、不可分割的联系。
世界上几乎没有一个文明发源地不是傍依江河、湖泊,并依靠必要的可供水源而发展起来的。中国的黄河、埃及的尼罗河、印度的恒河、中东的底格里斯河和幼发拉底河,都以其丰富的乳汁孕育了人类早期的伟大文明。因此,可以说没有水,就没有人类的文明,就没有城市。反之,由于水源的枯竭,致使城市变成荒芜废墟的例子,在世界各地也不胜枚举。如我国新疆丝绸之路上的楼兰等。
(2)城市发展的动力
为了城市的发展,必须开发、利用和管理好水资源。“治水”与“用水”是城市发展中的必要条件。“治水”主要表现在城市的防洪和排涝方面;“用水”主要体现在“供水”、“漕运”、“灌溉”等方面。以北京为例,自金朝建都在蓟城800多年来,为了都城的建设、城市的用水、城市的美化和漕运的发展,历代都充分地开发利用都城附近的泉水,成功地建成了一个完善的供水排水河湖系统。
北京历史上有名的房涞涿灌渠工程、房陵堰和白浮引水等工程,曾使北京出现船货云集的盛况。解放后,由于开发了永定河、潮白河冲积扇丰富的地下水源;开发治理了永定河、潮白河,修建了官厅、密云两大水库,引水到北京,使工农业生产蓬勃发展,城市面貌大大改观。由此可见,水资源是城市发展的必要条件。
(3)城市发展的瓶颈
从世界范围来看,自从18世纪英国的工业化革命以来,工业迅速膨胀,人口向城市不断集中,城市规模越来越大。世界上千万人口以上的特大城市就有十多个,其中以墨西哥城最大,达到3500万人,给城市供排水带来了很大困难。在19世纪中期的1848年和1854年,英国由于河流受病原体的污染,造成两次霍乱流行,1892年德国霍乱流行,这几次都使一万多人死亡。20世纪中期,许多国家发生了水荒,特别是近几年,我国缺水的城市也越来越多。
据1995年水利年鉴报道:目前,全国有300多座缺水城市,在调查的270座城市,占全国城市总数近60%,占总人口57%,工农业总产值占全国城市的49%,如遇中等干旱年和特殊干旱年,分别缺水达35,8亿立方米和62.4亿立方米。当年这些城市缺水对社会经济发展和环境的影响如下:
①影响了城市人民生活正常用水,在特殊干旱年,270座城市生活缺水8亿立方米(相当于每日220万吨),数字不很大,但对人民生活造成的困难却很严重,成为社会不安定的潜在因素之一。如1989年夏季用水高峰时,大连市供水低压区有3.5万户面临断水的危险,岭前一个居民区连续几天供不上水,一些居民破坏了市政供水措施。同年,哈尔滨有40万居民吃“夜来水”,太平区发生了居民与工厂争水的纠纷。
②影响城市工业的生产和发展,270座城市特殊干旱年工业缺水达20亿立方米,影响工业产值1000亿元。
③工农业争水矛盾加剧,一些城市因缺水而挤占农业用水,从而使农用灌溉受影响。北京农业用水90%以上已是机井水,运河水已基本不给两岸农民使用,每年只拨2000万立方米,在春季小麦只浇1—2次水,由于灌溉期缺水使小麦产量每亩减少100公斤以上。
④使一些城市饮用水不符合卫生标准的现象加剧,从而危害人民的身体健康。如北京的双桥地区和房山石化地区,地下水严重污染超标,迫使目前房山县城不得不迁移至良乡。
⑤大量超采地下水引起水环境恶化。据全国不完全统计,已形成地下区域漏斗56个,漏斗面积达87000平方公里,其中尤以城市最为严重,有的城市水位(如北京)已下降到200多米、漏斗面积达2000多平方公里,含水层几乎疏干;由于大量超采地下水,许多城市发生地面沉降,出现裂缝,不仅影响环境,而且损坏建筑物;沿海城市出现海水入浸和地下淡水咸化。据对辽、冀、鲁沿海城市调查,海水入侵面积达1433平方公里,有90万人,244万头牲畜饮水困难,每年减产粮食1.26亿千克,海水入侵面积仍在扩大。
据270座缺水城市预测,在充分考虑用水前提下,中等干旱年和特殊干旱年与现状条件下可供水相比,到2000年分别缺水310.8亿立方米和348.8亿立方米;到2010年分别缺水587.2亿立方米和625.1亿立方米。
(4)人类健康的卫士