书城自然科学(探究式科普丛书)无法摆脱的境遇:黑洞
49529300000009

第9章 黑洞的远亲近邻——黑洞探索篇(3)

在宇宙发展到一定时期,宇宙中充满均匀的中性原子气体云,大体积气体云由于自身引力而不稳定,造成坍缩。这样,恒星便进入形成阶段。在坍缩开始阶段,气体云内部压力很微小,物质在自引力作用下,加速向中心坠落。当物质的线度,收缩了几个数量级后,情况就不同了,一方面,气体的密度,有了剧烈的增加,另一方面,由于失去的引力位能部分的转化成热能,气体温度也有了很大的增加,气体的压力,正比于它的密度与温度的乘积,因而在坍缩过程中,压力增长更快,这样,在气体内部,很快形成一个足以与自引力相抗衡的压力场,这压力场最后制止引力坍缩,从而建立起一个新的力学平衡位形,称之为星坯。

星坯的力学平衡,是靠内部压力梯度与自引力相抗衡造成的,而压力梯度的存在,却依赖于内部温度的不均匀性(即星坯中心的温度要高于外围的温度),因此在热学上,这是一个不平衡的系统,热量将从中心逐渐地向外流出。

这一热学上趋向平衡的自然倾向,对力学起着削弱的作用。于是星坯必须缓慢地收缩,以其引力位能的降低,来升高温度,从而来恢复力学平衡;同时也是以引力位能的降低,来提供星坯辐射所需的能量。这就是星坯演化的主要物理机制。

在形成几百万到几千亿年之后,恒星会消耗完核心中的氢。大质量的恒星,会比小质量的恒星,更快消耗完核心的氢。在消耗完核心中的氢之后,核心部分的核反应会停止,而留下一个氦核。失去了抵抗重力的核反应能量之后,恒星的外壳开始引力坍缩。核心的温度和压力,像恒星形成过程中一样升高,但是在一个更高的层次上。一旦核心的温度达到了1亿K,核心就开始进行氦聚变,重新通过核聚变产生能量,来抵抗引力。恒星质量不足以产生氦聚变的,会释放热能,逐渐冷却,成为红矮星。积热的核心,会造成恒星大幅膨胀,达到在其主星序阶段的数百倍大小,成为红巨星。

红巨星阶段,会持续数百万年,但是大部分红巨星,都是变星,不如主序星稳定。

恒星的下一步演化,再一次由恒星的质量决定。

总之,对于我们来说,恒星的行为和演化是非常复杂的,但观察和发现,它们从来没有同人类分离过。而今,我们研究恒星行为的技能,变得比过去更加有力。当然,一旦我们真正搞懂了恒星的起源和演化,对于我们研究宇宙的起源与演化,包括银河系的起源,都是具有重要价值的。

2.恒星的运动

众所周知,世间万物无不都在运动,恒星虽然看似在天空中恒定不动,其实它也有自己的运动。由于不同恒星运动的速度和方向不一样,它们在天空中相互之间的相对位置,会发生变化,这种变化称为恒星的自行。全天恒星之中,包括那些肉眼看不见的很暗的恒星在内,运行最快的,是巴纳德星,达到每年10.31角秒(1角秒是圆周上1度的1/3600)。一般的恒星自行要小得多,绝大多数小于1角秒。恒星自行的大小,并不能反映恒星真实运动速度的大小。

同样的运动速度,距离远就看上去很慢,而距离近则看上去很快。

由于巴纳德星离我们很近,不到6光年,真实的运动速度,不过88千米/秒。恒星的自行,只反映了恒星在垂直于我们视线方向的运动,称为切向速度。恒星在沿我们视线方向,也在运动,这一运动速度,称为视向速度。巴纳德星的视向速度是-108千米/秒(负的视向速度,表示向我们接近,而正的视向速度,表示离我们很远)。恒星在空间的速度,应是切向速度和视向速度的合成速度,对于巴纳德星,它的速度为139千米/秒。

上述恒星的空间运动,由三个部分组成。第一是恒星绕银河系中心的圆周运动,这是银河系自转的反应。第二是太阳参与银河系自转运动的反映。在扣除这两种运动的反应之后,才真正是恒星本身的运动,称为恒星的本动。

3.恒星的“生”与“死”

举目仰望空天,点点繁星引人遐思,至为深刻的莫过于,宇宙的深远无尽和永恒不灭,然而那一颗颗闪烁的星星,果真永恒不灭吗?科学的答案是否定的,宇宙中形形色色的各种天体,包括和太阳一样发光发热的恒星,也是有它自己的“生命”历程的。

(1)恒星的诞生地

银河系之外一个遥远而美丽的星系,代号M100,我们的银河系,与此十分相似,都是由千亿颗恒星组成的庞大天体集团。可以清楚地看到,整个星系像一个扁平的盘子-星系盘,盘中缠绕着几条光亮的“臂”,称为旋臂。在旋臂和旋臂之间,是一些暗弱的区域,科学分析表明,这里大多是炽热而高度电离的气体,其中气体压力很大,可以抵制气体在引力作用下的收缩倾向,所以这些区域不易形成恒星。而在旋臂中,气体的密度较大,离子、原子和尘埃颗粒之间的碰撞相当频繁,能有效地使气体“冷却”,并产生氢分子构成的气体云团-分子云。分子云的温度较低,通常仅为绝对温度10度左右,每一个云的质量相当于太阳的1000?10000倍。正是这些分子云的进一步碎裂和坍缩,导致一群群原始恒星的诞生。

作为原始恒星诞生地的星际云团,最有名的当属猎户星座中间“三星”下方称为“宝剑”处的一团云雾,这便是着名的“猎户大星云”,这其中有许多刚刚诞生不久的恒星和仍处于襁褓中的原恒星。“鹰状星云”M16,则是另一个着名的恒星诞生地。

(2)恒星的诞生-星卵

作为恒星诞生地的星际气体云团,十分稀薄而且温度极低,云团中与引力相抗衡的气体压力很弱,引力的作用,使得云团缓慢地收缩。

超新星爆炸产生的冲击波,或云团周围一些亮星向外喷射的高热气流称为“星风”,都会使云团中出现不均匀的密度分布,造成云团中出现多个密度中心,这些密度中心周围的气体,分别向这些中心收缩,形成一个个小云团。收缩过程中,小云团中心温度升高,旋转加快,密度越来越大,演变成中心有核,周围由盘状物质包围的形状,云团的表面温度一般为绝对温度2000~3000K。

质量与太阳相仿,只发出红外辐射,不发射可见光,所以还只是恒星的胚胎,或形象地称之为“星卵”。

不同大小的云团,演化快慢大不一样,像太阳这样典型大小的恒星,其处于星卵的状态大约要维持100万年,在此期间云团继续复杂的收缩过程,中心温度则持续升高,一直到超过100万度,在这种极高的温度下,将出现由氢原子核变成氦原子核的“核聚变”反应,这是恒星的根本特征,星球只有到了由核聚变反应而释放能量,才算是真正进入了“成年恒星”的阶段,也只有此时,才真正变得灿烂夺目。此时的恒星中心密度和温度都很高,巨大的气体压力,足以抵抗引力收缩,所以恒星也不再继续收缩了,恒星的性质变得十分稳定,就像我们的太阳一样,恒星一生中90%以上的时间,都处于这一阶段。

(3)恒星的壮年-从主序星到红巨星

恒星发光发热的源泉,是由氢原子核转变为氦原子核的核聚变反应,维持核反应的阶段就是恒星的壮年期,天文学上称为“主序星”阶段。质量不同的恒星维持核反应的时间大不一样,大质量恒星的核心温度更高,核反应消耗氢的速度,比小质量恒星快得多,因此其生命历程相对来说要短得多,比如像10个太阳质量那样大的恒星,只能维持1000万年左右的生命,而太阳却能维持100亿年。

太阳这样大小的恒星,是宇宙中最为典型的,它们生命中80%~90%的时间,都处在稳定的主序阶段,当中心的氢逐渐燃烧完后,一颗恒星的生命,就接近尾声了。此时星体核心会迅速收缩,相反地,外层的氢却开始燃烧,并迅速膨胀,这是恒星生命中一个十分有趣的阶段,星体的体积大大增加,比如太阳这样的恒星会膨胀数百倍,膨胀的结果,导致恒星表面温度下降,颜色变红,同时其表面亮度却会大大增强,天文学上习惯于将光度(即恒星的本质亮度)大的天体称为“巨星”,因此这一阶段的恒星的典型特征,就是“红巨星”。相对而言,“红巨星”阶段是很短暂的,此后由于核心的收缩导致温度进一步升高,而引发氦原子核聚变为碳原子核的反应,以及此后一系列更为复杂的核聚变反应,恒星快速地走向死亡。

(4)恒星走向死亡

恒星走向死亡的途径,因其质量的不同,而有很大的不同,像太阳这种中等质量的星体,其死亡是比较“温和”的,在红巨星阶段之后,恒星的外壳一直向外膨胀,核心则持续收缩,发出紫外光或X射线,高能射线激发外层气体发出荧光,形成美丽的行星状星云。外壳气体逐渐消散在星际空间,成为下一代恒星的原料,而中心部分在收缩到一定程度后,停止了一切核反应过程,变成一颗冷却了的、密度却极大的白矮星,其中1个方糖大小的物质,重量可与一辆卡车相当。

质量较大的恒星走向死亡的途径,往往是十分壮烈的,通常质量大于太阳8倍以上的星球,不会平静地演化为白矮星,而是引发一场震天动地的大爆炸,星体的亮度突然增亮几十倍甚至几百倍,这就是所谓的超新星爆发,星体粉身碎骨,核心遗留下来两种特殊形态的天体-中子星或黑洞。中子星的质量和太阳差不多,但半径只有10千米左右,可见其密度比白矮星高得多了。超新星爆炸后,如果残留的核心质量仍较大,则会形成密度更为惊人的黑洞,任何物质甚至连光线都无法逃脱它强大的引力场,我们无法直接看到它,这也正是其名为“黑”的由来。

(5)恒星的“生死循环”

正如动、植物的死亡,将成为下一代生命的原料一样,恒星的死亡,也都有一个共同的特征,即将其本体中的大量物质,抛射到星际空间中,这些物质逐渐弥漫在宇宙空间中,以气体或尘埃的形式,成为新一代恒星的原材料。同时正是在恒星的演化过程中,通过核聚变,形成了许多构成生命所必需的重元素,这些重元素在恒星死亡后,弥散在宇宙空间中,才有可能导致像人这类生命的诞生。

4.恒星的主要特征

一般认为,由炽热的气体组成的、自身会发光发热的球状或类球状天体,称为恒星。恒星,是天体中的主体。太阳就是一颗恒星,除了月亮和行星,我们在夜晚所见的众星,都是恒星。恒星并非恒定不动,只是因为距离我们实在太遥远,不借助特殊工具和特殊方法,很难发现它们在天球上的位置变化,因此,古代人把它们叫做恒星。

宇宙中恒星的数目巨大,仅银河系中,估计就有3000亿颗。在整个天空中,人们能直接看到的恒星约6500颗,如果用天文望远镜看,多得难以计数。

恒星的主要特征为:恒星的大小相差悬殊。

太阳是一颗普通的恒星,它在恒星中,只是中等大小而已,有比太阳直径大数百倍甚至一二千倍的恒星,如御夫座双星中较暗的一颗,其直径是太阳直径的2000倍。也有直径仅为太阳的几十分之一,甚至更小的恒星,如白矮星的直径,约是太阳直径的1/100。

恒星的演化和结构,都取决于它的质量。根据测量发现,大多数恒星的质量,集中在0.1~10个太阳质量。质量再大的恒星,就很不稳定,难以存在,如果质量过小,引力收缩产生的中心温度和压力不够,核聚变反应就难以持续,即不能成为具有恒星性质的天体。

恒星的质量是变化的,随着热核反应的进行,质量不断转变成能量辐射出去,有些恒星还因为大气膨胀或抛射物质,而不断损失质量。

恒星的密度,差别很大。恒星的密度,是指平均密度(恒星总质量与总体积的比值)。由于恒星的大小差别很大,所以密度差别也较大。太阳的平均密度,是水的1.409倍,主序星的平均密度,是太阳的10倍到1/10倍左右,红超巨星的平均密度,比水小100万倍,而中子星的密度,高达水的万亿倍至百万亿倍。

恒星的颜色与光谱。当夜晚我们仰望星空时,如仔细观察,可以看到恒星颜色有所不同,有的发红,有的发蓝,有的看起来是黄的或白的,颜色的不同,是因为恒星的光谱不同。恒星光谱显示的,是恒星表面和大气的情况,同时也和内部结构有关。通过恒星光谱,可以确定恒星的化学组成、温度、大小、质量、密度、距离、运动方向和自转等许多信息,被称为“无声的语言”。一般情况下,蓝色恒星的表面温度在10000K以上。黄色恒星的表面温度在5000~6000K,如太阳。红色恒星的表面温度更低。

恒星的分类方法很多,依据恒星之间的关系可分为:单星、双星、星团等。单星,是孤独存在的恒星,近旁没有因引力作用而与之相互绕转的天体。像太阳就是一颗单星,离太阳最近的恒星,是关人马座的比邻星,它们之间相距4.3光年,已缺乏引力联系,不可能相互绕转。双星中,研究较多的是物理双星,其两颗子星在空间彼此靠得很近,在相互引力作用下,绕公共重心旋转,其中较亮的子星称为主星,亮度较小的称为伴星。天狼星、北斗一、参宿一、参宿三、参宿七等,都是双星。由成团的恒星组成的,被各成员的引力束缚在一起的恒星群,称为星团。星团成员彼此间,存在相对运动,同时星团的整体,也存在着空间运动。像最早被发现的昴星团中,恒星的数目从十几个到几万个不等。