声音是人耳对大气中空气分子的疏密波动的感觉。譬如说,我们敲钟时,这口钟被敲击而发生振动,这种振动推动了邻近的空气分子,使它们发生密度的疏密变化,这种疏密的周期性变化,在空气中传播,就形成声波。当声波传到我们的耳朵中来时,我们就听到了钟的声音。
近年来,用声音来探测大气的研究,引起了人们的注意。早在1901年,人们就发现炮弹爆炸区周围约70~90公里以外,有一个听不到爆炸声的静声区,在这个静声区以外,又有可听见爆炸声的区域。第一次世界大战期间,这种现象更引起人们的注意。人们在爆炸地点四周不同距离处,安置了许多拾音器来接收爆炸声,以研究这种反常声波的传播现象。在第二次世界大战期间,人们还曾用火箭带了爆炸物在高空爆炸,并用地面拾音器进行探测。这些探测都证明在高空约50公里处,有一个高温区存在。静声区的出现,是声波在高空传播时发生了折射的缘故。
但近年来,利用声波探测大气的设备,主要是用“声雷达”。声雷达能测出近地面1~2公里以下的大气温度、湿度随高度的变化和它微小的脉动现象,还可测出风向、风速、锋面结构、对流热气流、逆温层等等。
声音为什么能够探测大气的性质呢?这是因为大气能影响声波的速度、路径,以及声波振动的频率。只要我们能测出声波速率、折射情况和振动频率的变化,就可了解大气的性质情况。
例如,声波在空中传播时,传播的速率会受空气温度、湿度和风速的影响,温度、湿度愈大,声音传播的速度也愈大。另外,顺风传声,声速就会加大;逆风传声,声速就会减小。声波传播的路线,也受大气中温度分布的影响而弯曲,这称为声音的折射。根据折射情况,可以推论空气中温度的分布情况。声波又是一种疏密波,有它的振动频率,当发声或散射声波的空中质粒在传声方向上,有相对于声波接收器的运动时,接收器接收到的声波频率,就会和原来声波的频率有很大不同,这称为“多普勒频移效应”。通过测量声波的多普勒频移效应,人们可以测出气流的运动。声波还会被空中悬浮物所散射。这种散射,有利于人们设计接受散射声波的仪器,以便了解声波在大气中传播过程中受大气的影响情况,从而推估大气的温度、湿度和风的分布。