上回说到摩尔根在他的《基因论》一书的末尾预言了基因是化学实体的假设。
但是摩尔根总是念念不忘他的老本行——胚胎发育学,他作此预言之后就离开对细胞遗传学的研究而重操旧业去了。
这科学的研究总是从现象到本质,从宏观到微观,就如那物理从牛顿探讨天体运行,直到卢瑟福打碎原子,这生物学自从达尔文创立进化论,孟德尔、摩尔根发现遗传规律之后,又渐渐追根到细胞内,进而又研究细胞核的结构。就如物理学进入核物理阶段一样,生物学也进到了一个新阶段——分子生物学,它要对生物细胞的分子结构进行探索,从而来破基因之谜。
其实在摩尔根之前就有人在做这样的探索,不过当时未能引起人们的注意。
1869年,瑞典人米歇尔发现细胞核主要由含磷物质构成,20年后人们发现这种物质是强酸,便称为核酸。德国人科赛尔将核酸水解,又发现它含有三种成分:
核糖、磷酸和有机碱。而有机碱又含有四种成分:胸腺嘧啶(T)、胞嘧啶(C)、腺嘌呤(A)、鸟嘌呤(G)。这名字有点别扭,我们只要记住那4个字母就行,下面还会有用。这细胞核真像一个竹笋,到此为止已被剥掉好几层皮了。但是,科赛尔的学生美国化学家莱文接过竹笋又剥了一层,他发现核酸里的糖比普通糖少一个碳原子,就叫它核糖。他又发现有些核糖少一个氧原子,就命名为脱氧核糖。这样,核酸就有了两种:核糖核酸(RNA)和脱氧核糖核酸(DNA)。好,现在笋皮已经剥光,下一步且看摩尔根的继承者怎样在这个DNA上做文章。
科学发展到20世纪,和19世纪以前相比,其研究方式已有了明显的不同。
一是,一个课题很难由本学科单独完成,出现了多学科交叉。比如原子核的裂变便需要许多费米、哈恩一流的物理学家、化学家共同参与才能发现。二是,一个难题由一个科学家单独解决越来越不可能,需要有庞大的实验室、研究中心,要有许多科学家的通力协作才能完成。这个DNA就在这样的时刻被托到解剖台上,而首先举起解剖刀的却是几个物理学家。
上世纪30年代中期,正是玻尔领导的哥本哈根学派在与爱因斯坦大论战,他们新创立的量子力学正蓬勃向上。这批物理学家不满足于只用物理现象来解释自己的理论,探索的触角又向生物学伸来。
话说1932年夏天,哥本哈根正在召开一个国际光疗会议。作为物理学家的玻尔不怕人说班门弄斧,竟在到会各国医学家、生物学家面前作了一个《光与生命》的演讲。他别出机杼,没有就生物论生物,而是从量子力学出发,大谈物理与生物的互补原理,使在场的许多专家听得茅塞顿开,有如久坐密室忽然打开窗户,吹进一股清新的凉风。单说这时在台下有一位叫德尔布吕克(1906—1981)的青年。他虽然才26岁,但已是一位原子物理学家。德尔布吕克本是德国人,曾就读于著名的哥廷根大学,这时正在丹麦玻尔的实验室里工作。当时他听了玻尔的讲话,忽然觉得和物理学相比生物学的微观世界还远没有被人涉足,而物理学的一些研究方法和原理正可以用于这门新学科。生理现象是比物理现象复杂,这原因就是它是生命的体现,而生命之谜正在遗传这一点,这是一个多么诱人的题目。于是,德尔布吕克暗下决心,改弦更张,由物理学转入生物学研究。
这次大会不久,欧洲大陆战云密布,科学家们纷纷避难美国。前面我们说到玻尔也去美国参加研究原子弹去了。他的学生德尔布吕克也到了美国,但是他并没有参加曼哈顿工程,而是一头扎到摩尔根的研究基地——加利福尼亚理工学院。
这时他看到实验室里在使用一种“噬菌体”做细菌和病毒研究的材料。这噬菌体是一种病毒,它的结构简单得出奇。它有一个六角形的头,头部中心含有DNA,头部后面拖着一条尾巴,尾巴梢上又有六根尾丝。当噬菌体感染细菌时,先用六根尾丝牢牢地粘附在细菌壁上。这时它的尾部放出一种酶,把细菌的细胞壁溶解开一个洞,然后就可钻入。噬菌体与其他生物的细胞染色体的基因有一样的物理、化学属性,但是它又极简单,就是一层蛋白质外壳包了一组基因。而且它繁殖得很快,侵入大肠杆菌内后,只要20分钟就可繁殖数百个后代。德尔布吕克见到这东西心中不觉一喜。选择最简单而又典型的对象来研究,不是物理学中常用的方法吗?要研究自由落体规律,就用一枚石子;要研究原子结构就先从只有一个质子、一个电子的氢原子入手。现在要研究基因,何不就从这个噬菌体身上突破呢?
噬菌体头部含有DNA,其他部分都是蛋白质,现在的问题是要区分它进入大肠杆菌后是靠哪一部分遗传繁殖的。好个搞原子物理的德尔布吕克,他立即从物理学的武库里借来了放射性同位素标记法,和生物学家赫尔希等人设计了一个极妙的试验。
原来DNA中只存在磷,不存在硫,而蛋白质中大多是硫,只有极少的磷。
于是他们用放射性磷(32P)和放射性硫(35S)来分别给DNA和蛋白质做了记号。然后用做了记号的噬菌体去感染大肠杆菌。带有放射性的噬菌体就像背了一个发报机一样,人们随时可以接收到它发回的信号,掌握其行踪。果然,这一着很灵。他们发现,当噬菌体侵入细菌内部时是将身体外壳留在细胞壁外,而将DNA渗入细胞内,这通过记录到的32P和35S就可以分得一清二楚,确实是只有DNA进入大肠杆菌内。但是20分钟后生成的噬菌体仍和原来一模一样,这就再清楚不过地证明只有DNA才是真正的遗传物质,执行遗传任务的并不是蛋白质。德尔布吕克因这项发现而获得1969年的诺贝尔医学和生理学奖。他半路出家,善借他山之石,终于有了殊勋,被后人尊称为“分子生物学之父”。
DNA就是遗传物质,那么它是一个什么样的结构,怎样实现遗传的呢?这个生物学中的大难题却又是一个物理学家首先来作答案。读者还记得,1900年这个年头发生了两件事,一是孟德尔遗传学说被重新发现,二是普朗克创立能量子概念。想不到四十多年后这两条各不相干的河却流到了一起。1944年量子力学家薛定谔(1887—1961)写了一本研究生物学的书《生命是什么?》。他指出遗传物质可能是由基本粒子连接起来的非周期结晶。它就像电报中的电码,通过“·”和“—”组合成一种密码,这种生命的密码被复制,传给后代,这就是遗传。真是无独有偶,薛定谔这本书和玻尔的那篇演讲同样出手不凡,很快成为名著广为流传。在为这本书所激动的许多读者中也有一位青年物理学家叫克里克(1916—),他本毕业于伦敦大学,曾专攻物理,但看到薛定谔的书后就如德尔布吕克一样决心转攻生物,便来到剑桥的卡文迪许实验室。这时克里克又遇到了从美国来的华特生(1928—),他本是学动物学的,也是受到薛定谔那本小册子的影响来探索遗传之谜。于是两人合兵一处开始探求DNA的结构。话说当时一起向DNA这个神秘王国进军的共有三支人马。
这第一支人马是伦敦大学的威尔金斯领导的一个小组。他也是用物理办法,请X射线来帮忙。因为DNA是生物高分子,普通光学显微镜根本看不到它的结构。X射线波长很短,穿过DNA分子时,射线打在分子的不同位置,造成在一些方向上加强,在另一些方向上减弱,这叫衍射。分析这种衍射图样,就可以确定原子间的距离和排列,这样就可以弄清它的分子结构。威尔金斯就用这种办法拍到了一张DNA晶体结构的照片,这上面是一片云状的圈圈点点,他不敢立即下结论,只猜想DNA的结构大概是螺旋形的。
这第二支人马是美国的结构化学权威鲍林(1901—1994)领导的小组。1951年夏天他先用X射线探测蛋白质的结构,顺利地得出阿尔法螺旋模型,眼看离探清DNA的结构也只有一步之遥了。
这第三支人马就是半路出家的华特生和克里克了。论实验条件是威尔金斯实验室最好,论知识底子是鲍林最雄厚,但是论年龄却是华特生和克里克最年轻,思想也最少保守。