书城童书数理化通俗演义
2657500000086

第86章 破密码遗传谜底终揭晓 大融合科学深处无疆界——生命科学的发展(2)

DNA双螺旋结构和它的复带条代表DNA股链的骨架,由交替的糖和磷酸基团组成,在核酸碱基A,G,T,C之间按A—T,G—C配对规则存在的弱键,把双股链结合在一起。图下部表示当图中DNA双螺旋被复制成为两个双螺旋时,所发生的情况,过程由下向上进行,如拉链一样分成两半。所生成的每个双螺旋中包含着一股老链和一股新链。

却说这两个年轻人日夜苦干,决心打破这三军鼎立的局面,首先夺魁。也合该他们得胜,机会终于到来。1951年5月华特生在一个科学会议上遇见威尔金斯,威尔金斯身边正带着几张DNA的X光衍射照片。华特生惊喜异常,立即要了一张。威尔金斯倒不保守,向他诚恳地谈了自己的猜想。

再说华特生得了这张照片,回到卡文迪许实验室立即喊克里克快来。两人伏在案头好一阵切磋。DNA的结构是螺旋形,看来确定无疑了。这时华特生拿起一个放大镜仔细扫视图画,突然他把目光停在一个十字状的地方说道:“这地方有个交叉,我看这种螺旋很可能是双层的,就像一个扶梯,旋转而上,两边各有一个扶手。”“对,很有道理。根据我们掌握的资料,威尔金斯小组的弗兰克林也认为它是一种双链同轴排列。现在看来这个问题就只差一层窗户纸没有捅破了。到底在这个双螺旋体里T、C、A、G这四种物质怎样组合排列,弄清这个也就弄清了DNA的模型。”克里克说着也感到很兴奋。

“看来我们现在的主攻方向就是要立即制出一个DNA模型。有了这个模型才能说清遗传机理。”

他们找来金属绞合线,又参考了弗兰克林测得的数据,两人在实验室的车间里做成又拆掉,拆了又重做,这样连续十几个月,总是找不到一个理想的模式。

这天他们正在实验室里累得汗流满面,突然助手推门进来说:“有了一个新方案。”

“什么方案?”

“鲍林已经宣布,他完成了DNA模型,是三股螺旋!”

这个消息可是非同小可,就是说在这场竞赛中,对手已经超过他们冲到了终点。刚才还是一种迷惘的烦恼,现在更是加了一种失败的沮丧。克里克一屁股坐在椅子上,顺手将那些乱七八糟的木棒、线头推到一旁。华特生痴呆呆地站在那里,半天自语道:“三螺旋,这不大可能吧?”

事实上他们是虚惊一场。没有多久各实验室都证明三股螺旋的模型并不能解释DNA的结构。

华特生和克里克经这场虚惊之后对自己的想法更有把握,更加紧了制作,卡文迪许实验室的车间也为他们帮了大忙。1953年元旦刚过,华特生和克里克就制出了一个新模型,在两股糖与磷酸的螺旋链之间,夹着一一相同的碱基。A基与A基相对,T基与T基相对。这种模型倒是符合已知的资料,但是构型别扭,因碱基分子大小不同,使两条外骨架发生了扭曲。

华特生坐在桌旁,对着这个奇怪的模型陷入沉思。他想神秘的DNA应该是有一种和谐的、美的结构,决不应该这样歪歪扭扭,他这样想了一会儿便把碱基拆下来重新换了个位置,大小搭配,让A和T配对、G和C配对。这样一来面前的模型真如一条凌空翻舞的彩绸,那样舒展自如,那样轻松和谐,而且又符合前不久关于DNA结构的另一项发现:A、T两基的数目与G、C两基的数目都正好相等。DNA结构之谜从此解开。读者也许要问,物质的客观形状与人主观的美感有什么关系,那华特生何以从美学角度出发倒找到了问题的根本。原来自然中的生物却常常是以一种美的、合理的结构存在。你看那树叶上对称的叶脉,你看飞鸟对称的双翅,还有那蜜蜂为自己建造的蜂房都是标准的六角形小格,就是高明的建筑师见了也叹为观止。

所以这美感决不独为艺术家所有,它又常常是科学家的一种素质。人们靠感觉感知的,最悦目、悦耳、最舒服的东西是美的。客观存在的最合理、最科学、最实用、最理想的东西也是美的,无论从满足人的主观感觉,还是满足客观世界的科学结构,美都是一个终极目标,就像自然科学和社会科学都能在哲学上相会合一样。作者甚至想象,也许有一天,就像人们解剖基本粒子、解剖细胞核一样,能解剖到“美”的物质根据。

再说华特生和克里克得到这个美的、合理的模型,喜不自禁,便立即写成一篇论文发表在1953年4月的英国《自然》杂志上。他们在给编辑部的信中说:“这确是个奇特的模型。不过既然DNA是个不寻常的物质,我们也就敢作不寻常之想了。”的确,在这三支力量的竞争中,华特生和克里克资历最浅而首先夺魁,正得力于他们敢大胆想象,不循常规。后来,直到1974年,鲍林还遗憾地说:“我深知核酸内含有嘌呤和嘧啶,但为什么就没有想到给它们配对呢?我总在探讨三螺旋,就是没有去试一下双螺旋。哎,那些极简单的概念,有时竟是这样难以捉摸。”华特生他们的论文只千把来字,但是它足可以与达尔文的《物种起源》相媲美,它开创了分子生物学的新时代。华特生、克里克和威尔金斯因此同时获得1962年诺贝尔医学和生理学奖金。

按照华特生的模型,遗传信息怎样传递呢?在这条双螺旋中两股糖和磷酸组成梯子的两侧A—T、C—G连成梯子的横杠。在一个人体细胞中,DNA梯子全长约有一米,所包含的横杠就有60亿条之多。一个人的基因,它可能是梯子的一段,约有2000条横杠。

当细胞繁殖的时候,这条双螺旋就从中间分开,犹如拉链一样从中间分成两半。这时每一个碱基对都拆开了,但是这剩下的一半在浮游于细胞核内的分子中很快就找到了新的伴侣。A又与新的T结合,G又与新的C结合,这样就形成两个与原来的DNA一模一样的复制品,这就是生命的遗传。如果DNA在复制过程中出一点意外,就会造成物种的突变。DNA上怎样携带大量的遗传基因呢?这正是薛定谔假设的密电码。构成DNA的四种核苷酸,每次取出三个构成一组,这样排列组合,便有了足够多的遗传基因。60年代末用电子显微镜摄到的放大了730万倍的DNA照片已经证实了这一点。而科学家的一个目标就是破译这些密码了。

各位读者,人类认识世界是为了改造世界。正如认识了原子核的结构就要设法让它释放能量一样,现在既然知道了遗传密码就要让生物按照人的意志来遗传和变异了。这便是生物遗传工程。1973年,美国科学家第一次实现了按人的意志来制造新的生物。他们将大肠杆菌的一个带抗四环素和一个带抗链霉素的遗传信息的基因重新组合,又放回大肠杆菌中复制,结果新的菌就同时既抗四环素又抗链霉素。

别看这个极小的实验,它的意义就如费米当年发现核裂变就可引来以后的原子弹爆炸一样,预示着人类在生命领域也将要大显身手了。比如脑激素是治疗糖尿病的良药,但是过去要从牲畜脑浆中提取,十万只羊脑才能提取到一毫克,何等昂贵。1977年人们已经能人工合成脑激素遗传基因,让那个繁殖很快的大肠杆菌按照这个基因去复制脑激素,它果然顺利完成了任务。提取一毫克脑激素,只需要两升大肠杆菌培养液,从此就不用那么多羊脑了,成本大大降低。

在农业方面,作物需要大量的氮,因此全世界每年要生产4000多万吨氮肥。

人们早就发现豆科植物可以自己依靠土壤中的根瘤菌来吸收空气中的氮。如果我们能将这种遗传密码也送到小麦、水稻等作物中去,那么全世界的氮肥厂就都可以关门了。

随着人们解开遗传之谜和生命科学的发展,在不远的将来,人类将可以按自己的意志来制造新的生物,将可以通过修复和调节基因来治疗疾病,改造生命自身。试想,当人类对大自然还不甚了解时,曾是怎样的盲目、被动,是怎样地受着自然的嘲弄。但是随着自然之谜的揭开,一天一天,人类终于成了自然的主人。

当人类对自己的生命还不甚了解时,也曾是怎样地受着疾病的折磨和嘲弄。现在,随着生命之谜的揭开,人对自身的认识便出现了一个飞跃,其意义决不亚于当初哥白尼认识宇宙。从此,人类不但能改造世界,还能改造自己的生命,科学将使他们在宇宙间获得最充分的自由。