书城小说走进科学
7756600000032

第32章 化学大发现

钾与钠的发现

19世纪初,伏特发明了电池后,各国化学家纷纷利用电池进行分解各种物质的实验研究。其中有一位年轻的英国化学家汉夫里戴维(Humphry Davy,1778~1829,英国化学家)正在进行苛性碱的电解实验。

戴维于1778年12月17日生于康沃尔郡彭赞斯,1795~1798年,给一位药剂师当学徒,其间读了A。-L。拉瓦锡的《化学原理》,从此对化学产生了浓厚的兴趣。1798~1801年,在布里斯托尔任气体研究所的实验室管理员。1801年开始在英国皇家学院讲授化学。1802年任化学教授和皇家学会会志助理编辑。1803年当选为英国皇家学会会员。

他所进行的苛性碱的电解实验,在当时也是绝无仅有的了,因为人们向来以为苛性碱是不可再分解的简单物质,几乎所有化学家都毫无疑问地把它当成了化学元素。可是,戴维却有另外一种冲破传统的想法。他推想,碱有几种化学性质,跟一些已知的成分复杂的物质很相似,所以,它很可能也是化合物。于是,他先选用苛性钾进行电解实验。然而几次实验都失败了,苛性钾原封不动,呈现出的都是水被分解成氢和氧的现象。不过,戴维没有因此而丧失信心。他不断改进实验。既然水总在里面捣乱,干脆就用无水苛性钾吧!他按着这一思想又干了起来。果然,奇异的现象出现了。

一天,戴维让助手埃德蒙得把苛性钾水溶液换成无水苛性钾,并给无水苛性钾加热,然后开始对熔融的无水苛性钾电解……

“它会不会分解呢?”戴维把白金导线接触熔融了的苛性钾表面时,心里在想。“现在没有水了,匙子里只有苛性钾一种东西。如果它不是一种元素,那么它马上就会露出原形……可是如果电流不能通过熔融的碱呢?”正在他反复思索之时,电流通过去了。“喂!”戴维声音都变了,“埃德蒙得,到这儿来!苛性钾分解了!”助手用手遮着眼睛,往仪器前凑。而戴维自己却差点把鼻子碰到白金匙子上。原来,由于电流的作用,熔融的苛性钾不仅通过电流,发生显著的变化,而且在白金导线跟苛性钾接触的地方,还出现了一些小小的火舌,淡紫色的火焰,非常美丽,只要电路不断,火焰不会熄灭;电流一停,火焰也就立刻熄灭。埃德蒙得莫名其妙地看着教授,说:“这是怎么回事?”“埃德蒙得,这意味着,咱们已经把这种假元素给揭穿了。”戴维自信地说,“电流已经把苛性钾所含的某种未知物质,分离出来。导线旁边发着淡紫色火焰的就是它。”这是一种什么样的物质呢?怎样才能收集到这种神秘的物质呢?戴维再次陷入思索之中……

1807年10月的一个早晨,薄雾蒙蒙。戴维吃完早饭,匆匆走向实验室。几天来,他一直在想,第一次没有把苛性钾分解成功是因为水;第二次,又没有成功,可能是因为那熔融的碱热到了发赤的地步,温度太高了。于是又想出了第三个办法,让苛性钾从空气里稍微吸收一点湿气试试。按着这一想法,他和助手埃德蒙得又开始了新的实验……

电流果然通过去了。那固体的碱块,立即开始从上下两个方向熔化。戴维见此情景,脸色渐渐苍白了。他站在试验台旁边,紧张得几乎停止了呼吸。这时,碱块同金属接触的地方正在熔化,发出细微的咝咝声。突然,啪的一声爆响,像爆竹般从熔融的碱上面传出。戴维用胳膊肘使劲推了一推他的助手,迅速把头俯到试验台上。“埃德蒙得……埃德蒙得……”他喃喃地说,“你看啊,埃德蒙得!”熔融的苛性钾上面沸腾得越来越厉害,下面的白金片上有些极小的珠子从熔融了的苛性钾里滚出来。它们跟水银珠一样活动,一样带有银白的光泽,可是它们和水银可大不相同。它们中间有的刚一滚出来,就啪的一声裂开,爆发出一股美丽悦目的淡紫色火焰而消失得无影无踪;有的虽然侥幸得以保全,在空气中却很快就变暗,蒙上一层白膜。原来碱的组成中含有某种金属!而且在这以前,谁也不知道世界上有这么一种金属……戴维认清了这一点,突然离开座位,在实验室里如醉如狂似地跳起舞来……

又经过几次验证后,他终于肯定了自己的新发现。他大胆地把苛性钾从元素名单上抹掉,换上了一个当时还没有人知道的新元素。这次真的是一种元素了,他给它取名叫“锅灰素”,译成中文就是“钾”。

分解了苛性钾以后,戴维立即着手分解另一种碱——苛性钠,并很快获得成功。他为这种从苛性钠中分离出来的新的金属元素,取名为“苏打素”,译成中文即是“钠”。

钾和钠的性质有很多相似之处,只不过,钠的金属活动性比钾略微差一点儿。钠是黄色的火焰,钾是淡紫色的火焰。所以当时人们都说:“戴维发现了双胞胎元素!”

戴维的科研成就很多。1800年研究电解,从理论上解释了电解过程,指出与电极具有相反电荷的带电质点能按相对亲和力的大小排列成一系列,这实际上是现代电化学的基础;1802年开创了农业化学;继1807年用电解法离析出金属钾和钠之后,他在1808年又分离出金属钙、锶、钡和镁,他对碱金属的详细研究,为拉瓦锡所指出的“所有碱都含有氧”,提供了证明;推翻了拉瓦锡关于所有酸中都含有氧的观点,提出所有酸含有氢而不是氧。此外,他对氯、碘及其化合物、金刚石、铂的催化作用等方面也都做了卓有成果的研究。

戴维的一生与荣誉相伴,他在1805年获科普利奖章,1807年因在皇家学会演讲“论电的化学作用”,获拿破仑的3000法郎奖金,这是奖给当年最重要的电学研究项目的奖金,1813年当选为法国科学院通讯院士,1816年获伦福德奖章,1827年获皇家奖章。1820年戴维出任英国皇家学会会员主席。1829年5月29日他卒于瑞士日内瓦。

元素周期率的发现

化学的迷宫

18世纪中叶到19世纪中叶,那是一个化学元素大发现的年代,由于电解法、光谱分析等新方法的运用,新元素被人们一个个找出来,平均每两年半就有一个新元素被发现。到1869年,人们已经发现了63种元素。

那时候,最令化学家们激动的事莫过于发现新元素了。可是,谁也说不清,世界上究竟有多少元素,又应当怎样去寻找新元素,人们只是在盲目地摸索着。

更令化学家们伤脑筋的是,随着新发现元素的增多,随着人们对这些元素性质了解的增多,人们反而被眼前这纷繁复杂的化学世界给搞糊涂了。

你看,63种元素的性质是那样的不同,有的是气体,有的是液体,有的是固体;有的重,有的轻;有的软,有的硬;有的有味,有的无味;有的放在空气中自己就会燃烧,有的存放几千年也不会起变化;有的遇水就爆炸,有的放在水中煮三天三夜也纹丝不动……这63种元素每一种又能和其他物质反应生成几十种、几百种甚至上千种化合物。

尽管人们对每一种元素都已有了相当详尽的了解,能测出每一种元素的原子量、比重、沸点、熔点,知道它们和氧如何反应,和氢如何反应,和酸,碱生成什么,甚至能测出反应时能生成多少热……大学教授们对这些元素和它们的化合物的性质能讲上几个星期、几个月。可是这些枝枝节节讲得越多,人们就越是不得要领,仿佛被引进了一个没有头绪的化学迷宫之中。难道世界上化学物质就是这样偶然地、杂乱无章地凑到一起的吗?各种元素之间有没有什么内在的联系?有没有一个统一的规律支配它们呢?

许多化学家们早就不满意这种混乱无序的状态了,他们开始思索和寻求这一连串问题的答案。

给元素分类

很早就有人根据元素外观,将元素分成了金属和非金属两大类。不过,这种分类方法实在太笼统了,对搞清元素之间的关系没有什么帮助。

1828年,德国科学家德贝莱纳发现,化学元素中,有好几组元素,每三种元素之间性质相似,而且中间元素的原子量大约是两端元素原子量的平均值。比如钾、钠、锂,氯、溴、碘,钙、锶、钡等。他一共发现5组这样的元素,起名为三元素组。

可是当时已经发现的元素有54种,其他元素之间又有什么关系呢?而且整个元素之间有无规律可循呢?三元素组都回答不了。不过,这是人类首次根据元素的性质和原子量对于元素进行分类的尝试。

后来,又有好多化学家加入到给元素分类的队伍中来了,到了19世纪中叶,提出的元素分类方法已不下50种。

美国人库克把元素分成6系,英国人欧德林把元素分成13类,德国人迈尔发表了6元素表……但这些分类都只得到了局部的结论。

第一个把元素作为整体考虑的是法国人尚古多。1862年,他绘制了螺旋图:把所有元素都按照原子量的大小标记在绕着圆柱体上升的螺旋线上,结果性质相似的元素落在了同一条母线上,也就是说,他实际上已发现了元素变化具有某种周期性。

1865年,英国青年科学家纽兰兹又提出了八音律。他发现按照原子量递增的顺序给元素排队,从任意一种元素算起,第八种元素的性质几乎重复着第一种元素的性质,就好像音乐中的八度音一样,他把这称作八音律。他按照八音律关系排成的元素表,前两个直行几乎相应于现代元素周期表中的第二、三周期。

这些早期的分类工作并没有得到人们的理解和重视,甚至还遭到非难和嘲笑。

尚古多先后把他的“螺旋图”和三篇论文寄到巴黎科学院,却石沉大海,根本没有人理睬他。一直到20多年后,门捷列夫的元素周期律已经发现,他的螺旋图才被重新找出来正式出版,就这样,非常可惜,他的发现未能够在历史上起到应有的作用。

纽兰兹在英国化学会上宣读他的八音律时,遭到了许多人的嘲笑。一位教授讥讽地说:“纽兰兹先生,您是否把元素按照它们的第一个字母排列,或许那样更符合八音律吧?”他的话引起人们一阵讪笑。在讽刺打击下,纽兰兹退却了,他放弃了对这一理论的探索工作,专心致志搞他的制糖工艺去了。

的确,这些早期的分类工作还极不完善,有许多漏洞和错误的地方。但是,他们正在一步步地向真理逼近,为元素周期律的发现奠定了基础。

寻找规律

就在同一时代,在彼得堡,也有一位年青的化学家为此绞尽脑汁,他就是德米特里伊凡诺维奇门捷列夫。

门捷列夫1834年出生在俄国西伯利亚的托波尔斯克,他的父亲是一位中学校长,他是家中的第14个孩子。在他刚几个月时,他父亲就双目失明,失去工作。他的母亲照料着一个大家庭,还管理着一个玻璃工厂。为了送门捷列夫上大学,母亲几乎变卖了全部财产,陪他一同到彼得堡。就在门捷列夫获准进入彼得堡师范学院时,他的母亲去世了。这位性格坚毅的母亲给了门捷列夫很大影响。

还在大学时代,门捷列夫就表现出不寻常的才智。大学毕业后,他先后在中学、大学任教,23岁时就担任了彼得堡大学的副教授。在完成对巴库油田的考察后,为了研究溶质和溶剂作用,他曾对283种物质逐个进行了分析测定,并且重新测定了一些元素的原子量,积累了丰富的元素知识。他还在德国、法国、比利时的一些化工厂考察过,大大开阔了眼界。

1867年,彼得堡大学聘请这位33岁的化学家担任教授,讲授无机化学课。

门捷列夫认真准备着讲稿,他发现,这门学科的俄语教材已经很陈旧了,外文教材也不适应要求,迫切需要一本能够反映无机化学最新进展的教科书。他开始编写《化学原理》的教科书。

每天清晨,一位速记员来到他的办公室,由门捷列夫口授,速记员整理。他很快写完了化学基本原理这一册。第二册接着该介绍元素和它们的化学性质了。

这些元素究竟该按照什么顺序排列呢?门捷列夫的写作停下来了。

是啊,当时还没有一个公认的元素分类法,大学教授们在讲授元素时都是按照自己认为最方便的顺序讲起。氧这种元素在自然界分布最广泛了,许多人都从氧讲起;也有人从氢讲起,因为氢是所有元素中最轻的;也有人从铁讲起,因为铁的用处最大;也有人从金讲起,因为这是元素中最贵重的……

大多数教授对此司空见惯,并不在意。反正元素之间没有任何秩序,从哪儿讲起不一样啊?

可是,门捷列夫却不满足于这样做。他与一些化学家一样,早就发现某些元素之间存在着极大的相似性。像锂、钠、钾,它们都是金属,化学性质都很活泼,能和水激烈反应,放出氢气。又如氟、氯、溴、碘等卤素,钙、锶、钡等碱土金属之间也都很相似……门捷列夫认为,这些现象决不是偶然的,一定有着一个一般规律在支配着这些元素,既决定了这些元素相似的地方,又决定了它们的区别。他决心要寻出这种规律来,让元素之间的关系变得简单明了。

发现元素周期表

“安东,到实验室去找几张厚纸来。”门捷列夫对仆人说。

安东走出门,莫名其妙的耸耸肩膀,很快拿来一卷厚纸。

门捷列夫把这些厚纸都打上格子。剪成了一个个长方形卡片,他要做什么呢?他正在筹划进行一个重要的试验。

门捷列夫在每一张卡片上写上元素的名称、原子量、化合物的化学式和主要的性质,一种元素一张卡片,就好像元素的户籍册一样。63张卡片全填好了,现在可以利用这些卡片对元素进行分类排队了。

门捷列夫皱着眉头思考着,每一种元素都有几十种性质,究竟是哪一种性质决定元素的规律呢?是元素的颜色吗?不是。固体的碘是紫黑色的,可是一加热,却变成了紫色的蒸气,磷有红磷,还有白磷……元素的颜色是随着外界条件的改变而改变的。

是元素的化合价吗?也不是。元素在生成不同化合物时化合价也不一样。如铁和硫生成硫化亚铁时是正二价,但是和氯生成氯化铁时却变成了正三价。

元素的比重、沸点、硬度、导电性、磁性等也都是随着外界条件变化而变化的。

门捷列夫把目光盯在了原子量上。每一种元素都有它独有的原子量,不管物质是冷的还是热的,不管是红色变种还是白色变种,也不管它和另一种元素生成什么新的化合物,原子量总是不变的,它就好像是元素的身份证。元素的性质应当由这个基本的特征来决定。

门捷列夫想到这一点,但那还只是一个模模糊糊的线索,是不是这样,还要靠事实来验证。

门捷列夫开始摆弄起他的63张纸牌来。

他先按照德贝莱纳那样,把卡片分在三个一组,按原子量大小排列,但是毫无结果。他又打乱了重新排列,一遍又一遍……当他按照原子量的大小把性质相似的元素排成一横行,依次一排排排下去时,惊人的事情出现了,原来杂乱无章的元素,现在关系变得清楚了:

从横行来看,一行元素随原子量增加性质越变越活泼。如锂、钠、钾、铷、铯:锂最轻,也最安静,放到水里只发出丝丝的声音,不像这一排的其他元素会着火;钾呢,比钠还要活泼,铷更加活泼;而排在最后的铯,在空气中一秒钟也不能呆,自己就会燃烧起来。

从竖行看,排在一行的元素性质随着原子量变化有规律地变化着,每隔7个元素又重复着上个周期元素的性质,以原子价变化为例:

元素:锂铍硼碳氮氧氟原子价: 1 2 3 4-4 5-3-2-1元素:钠镁铝硅磷硫氯原子价: 1 2 3 4-4 5-3-2-1

就像在操场上玩耍的一群穿着红红绿绿衣服的孩子,原来看不出规律,现在让他们按照个子高矮排成一行行,结果发现每一竖行小孩的衣服颜色都是按红橙黄绿青蓝紫变化的,而每一个横行衣服虽基本都是一个颜色,却越变越深,如从粉到深粉到红到深红……

门捷列夫万分激动,他找到了这个规律,那就是元素的性质和它们的原子量之间有周期性的关系。

不过,且慢,这支“队伍”并不是那样听话的,总有一些“调皮鬼”不遵守纪律,只要有一个元素不符合,这个规律就还不能算成立。

门捷列夫仿佛着了魔,无论白天还是黑夜,在讲台上还是在实验室里,在家中还是在大街上,他都在想着他的元素系统,不时又跑到实验室,对每一处有疑问的地方作实验,验证着他的想法……

1869年2月底,门捷列夫的第一个元素周期表排出来了。3月6日,他应邀到俄罗斯化学会上报告他的发现,可是就在会议前夕,他突然病倒了。最后只好由他的朋友舒托金代他宣读了他的论文,报告了他的伟大发现:1.按照原子量大小排列起来的元素,性质呈现明显的周期性;2.原子量的大小决定元素的性质;3.可以预测未知元素的发现;4.知道某元素的同类元素后,可以修正该元素的原子量。

两年后,门捷列夫又修改了原来的周期表,把竖排的表格改为横排,突出了元素的周期性和族的规律性,并划分了主族和副族,这样元素的系统性就更清楚了。这个周期表已基本具备了现代周期表的形式。

在门捷列夫发现周期律的同时,我们前面提到了那位德国科学家迈尔也获得了突破性进展,独立地发现了周期律。他修改了他的元素体系,于1869年制作了元素周期表,明确指出元素性质是原子量周期的函数。与门捷列夫的第一个表相比,迈尔对族的划分更加完美。

他们两人同时发现了周期律,也正说明了周期律发现的客观条件已经成熟了。

门捷列夫的预言

你也许会想,把元素按照它们的原子量大小一个挨着一个写下去,周期律就自动显示出来了,这是多么简单的事情啊,怎么会有那么多科学家没能一下成功呢?

问题远不是你想像得这样简单,没有广博的化学元素的知识,没有丰富的想像力,没有正确理论的指导,是不可能发现元素周期律的。

当时,有两大难题摆在人们面前:一是许多化学元素还没有被发现,我们今天知道的化学元素有110个,当时只发现了69个,就好比排队时,许多队员都溜走了,你怎么知道该在哪儿给他们留下位置呢?

第二个难题是当时许多元素的原子量测定得不准确,是错的。作为排队依据的原子量本身就有错,排出的队怎么可能正确呢?既然不是真正按元素原子量大小排的队,那么元素变化的周期性当然也就被打乱了。

迈尔就是被这两个问题给难倒了。他没有给未知元素留下空位置,当原子量与他的理论矛盾时,他只好抛弃了按原子量大小排队的原则,把元素的位置任意颠倒,结果元素性质变化还是不能很好符合他的八音律,因此,人们一下就抓住了他的把柄,把他给问倒了。

只有门捷列夫巧妙地解决了这些难题。

他大胆地修正了一些元素的原子量。

如按当时原子量的大小,铍应当排在碳和氮之间,可是这样一来,元素化合价有规律的变化就给破坏了。门捷列夫观察了铍以后的元素,排列都很有规律,又查看了前边的元素,发现了一个漏洞,锂和硼之间原子量相差较大,好像缺少了一个元素,而碳和氮之间原子量相差很小,铍夹在中间好像多了一个元素。如果把铍移到锂和硼之间,化合价立即变成有规律的变化了,可是原子量由小到大的排列顺序却给破坏了。可能性只有两种,或是铍的原子量测错了,或是元素的规律性变化不是由原子量决定的。

根据锂和硼的原子量大小,他毅然抹掉了铍的原子量是13.5这个数字,工整地写下了9,然后跑到实验室重新测定铍的原子量。果然铍的原子量是9而不是13.5,是前人把铍的原子量测错了。

就这样,门捷列夫还修正了铟、镧、钇、铒、铈、钍、铀的原子量,并不顾当时公认的原子量,改排了锇与铱、铂与金、碲与碘、钴与镍的顺序,提出重新测定这些元素原子量的建议。

后来,科学家们经过测定,证明了门捷列夫的修正值是正确的,门捷列夫对这几种元素位置的改排也是正确的,不过碲与碘、钴与镍位置为什么要颠倒,那是到后来人们发现原子序以后才解释清楚的。

对未知的元素,门捷列夫根据元素周期律及前后元素的性质,给它们留下了空位置,并且预言了这些元素的性质,甚至在什么样的情况下被发现。其中最有名的三个未知元素就是类硼、类铝、类硅。

门捷列夫是怎样想到并敢于这样做的呢?他曾对他的朋友这样说过:“许多不明了的地方使我为难,但我没有一分钟怀疑过我所做的结论的正确性。”

是的,门捷列夫坚信他发现的周期律是一个普遍的规律,一切元素的性质和他们的原子量是相关的,每一个元素都不是孤立地住在它的小房子里的,而和它四邻的元素性质有密切的关系。对四邻元素性质掌握得越清楚,就越能推算出中间元素的性质。

掌握了规律,并用规律能动地指导实践,作出科学的预测,这正是门捷列夫比他同时代其他人高明的地方。

不过,在当时的一些化学家看来,门捷列夫那么自信地修正一些元素的原子量,并预言一些不存在的元素,这简直是太狂妄了!他们批评道:“这是在臆造元素!化学是一个精密的学科,依据的是实在的物质,是无可辩驳的事实,如果把杜撰的东西也搜罗进去,那么这究竟是科学呢还是相术?”就连门捷列夫的老师也训诫他不务正业。

事实上,门捷列夫绝不是在毫无根据的主观臆测,他根据的正是大量实验和观察中得到的事实,以及从这些事实中抽象概括出的规律,他正是以此为出发点作出了科学的预测。

没有多久,门捷列夫的预言就被证实了。

预言被证实

1875年9月20日,巴黎科学院召开例会。院士伍尔兹代表他的学生布瓦博德朗宣读了一封信:

“前天,1875年8月27日夜间三四点,我在庇里牛斯山中的皮埃耳菲特矿所产的闪锌矿中,发现了一种新元素……”

布瓦博德朗用分光镜发现了一种陌生的紫色光谱,并且从锌盐中提纯到这种物质。为纪念他的祖国——法国,他给这种元素起名为镓(拉丁文是法国古时候的名称)。

这篇载有镓的发现的法国科学院院报传到了彼得堡,门捷列夫一口气读完了全文,激动万分:“毫无疑问,这个元素就是我在1869年预言的类铝!”

的确,镓和类铝性质完全一样,连门捷列夫所说的类铝是一种易于挥发的物质,将来一定有人用光谱分析法把它查出来也应验了。只不过门捷列夫预言类铝的比重是5.9,而布瓦博德朗测定镓的比重是4.7.

门捷列夫当即给布瓦博德朗写了一封信:“镓就是我预言的类铝,它的原子量接近68,比重是5.9,请你再试验一下,也许你那块物质还不纯。”

接到门捷列夫的信,布瓦博德朗十分惊讶,因为世界上只有他才是独一无二手中握有镓的人,门捷列夫根本没有这种元素,他怎么能知道这种元素的比重是5.9而不是4.7呢?而且这个人还如此的自信。不过,他还是决定再做一次试验。

果然,他的物质还不够纯。他又一次提纯了镓,并重新测定了镓的比重。结果,他信服了,门捷列夫是对的,镓的比重是5.941.

化学史上第一次一个预言的元素被发现了,这引起了全世界的轰动。门捷列夫的论文被迅速译成法文、英文,全世界的科学家们都知道了元素周期律的内容和意义。欧洲十几个实验室的科学家们紧张地工作着,他们在搜索门捷列夫预言的另外的尚未被发现的元素。

人们没有等待多久,1879年,瑞典科学家尼尔森在对硅铍钇矿石和黑稀金矿进行研究时,发现了一个新元素,完全符合门捷列夫描述的类硼,他命名这个元素为钪。

1886年,德国人温克勒在一种含银矿石中发现了一种新元素锗,它的性质与15年前门捷列夫预言的类硅是那样的一致:

门捷列夫预言:它的原子量大约是72.

温克勒测定:锗的原子量是72.73.

“它的比重应在5.5左右。”门捷列夫说。

“5.74.”温克勒证实。

门捷列夫:类硅的氧化物很难熔化,即使用烈火烧也不会融化,比重约4.7.

温克勒:正是这样。

门捷列夫:类硅的颜色是灰的。

温克勒:是的,还稍带点白色。

门捷列夫:新元素与氯的化合物比重为1.9.

温克勒:比重为1.887.

……

门捷列夫有关锗的一系列预言得到了温克勒的证实。温克勒由衷地说:“再也没有比类硅的发现更好地证明元素周期律的正确性了。它不仅证明了这是一个有胆略的理论,还扩大了我们的化学眼界,使人们在认识领域迈进了一步。”

门捷列夫先后预言了15种以上的未知元素,后来基本上都为实践所证实了。

考验与发展

随着门捷列夫所预言的元素一个个被证实,元素周期律得到全世界的普遍承认,成为指导人们进行化学研究的重要的理论。

在门捷列夫元素周期律发现之前,许多元素的发现带有很大的偶然性。例如碘就是库多瓦一次在海藻灰的母液中不小心加多了硫酸,结果突然升起了一股紫色的蒸气,于是歪打正着被发现。

有了元素周期表作参考,人们不必再大海捞针般地寻找新元素了,可以知道大概还有什么样的新元素没有被发现,这些元素的性质大概是怎么样的,应该用什么方法到哪里去寻找。元素周期表上的空白点一个一个被人们消灭了。

但是,就在1874年,门捷列夫元素周期律经受了一次几乎使之动摇的严重考验。

英国科学家瑞利发现从空气中除去氧、二氧化碳、水蒸汽后得到的氮和从化合物中得到的氮比重不一样。在化学家拉姆齐的帮助下,他发现了一种新元素氩。为研究氩的性质,拉姆齐把钇铀矿与硫酸一起加热,第一次在地球上得到了原先用光谱法发现的在太阳上才有的元素氦。

氩和氦的性质和过去人们发现的元素都不相同,它们好像顽固的单身汉一样,无论酸、碱、通电、加热,都不能让它们和任何物质起反应。在周期表中,哪一族也都无法安插它们,如果非要把它们插进已经排得满满的各族中,就会打破元素性质的周期性变化。

莫非是元素周期律错了吗?为了打破这种尴尬的局面,于是有的人就论证氩不是什么新元素,而是氮的变种。

拉姆齐不赞同这些看法,他相信元素周期律是一个普遍的规律。他认为,根据元素周期律,应该还有几种类似氩和氦的元素存在,它们可以组成性质类似的族,整个地加入元素周期表。

拉姆齐像门捷列夫那样,也尽可能写下了这些元素的性质,并预见它们的各种关系,与助手一起,开始了寻找新元素的工作。

1898年,他在分馏液态空气时,终于找到了三个新的稀有元素:氖、氪、氙,它们同氩和氦一样,都是性质不活泼的惰性气体。于是,这5种性质相似的元素组成了一个新的族,集体加入了元素周期表。门捷列夫及另外一些科学家建议这个族叫零族。

元素周期律又一次经受住了实践的考验。

随着科学技术的发展,今天,人们对元素周期律已经有了更深刻的认识。

元素的性质为什么会随着原子量的变化而呈现周期性的变化呢?即使当年门捷列夫对这个问题也回答不出来。现在人们已经搞清楚了。

原来,原子还不是物质不能再分的最小微粒。原子是由带正电的原子核和核外带负电的电子组成的。电子围绕着原子核运动着。

原子核也不是不可分化的,它是由质子和中子组成的,质子带一个正电荷,中子是不带电的中性粒子。

氢是第一号元素,它的原子核中有一个质子,氦是2号元素,它的原子核中有两个质子……铀是第92号元素,它的原子核中有92个质子……也就是说,某种元素原子核中的质子数,就等于它在周期表上的房间号数,这就是原子序数。

元素的原子核中有多少个质子,核外就有多少个电子。元素的性质所以会呈周期性的变化,就是由原子核的结构,特别是核外电子的排布决定的。同一族元素,最外层电子壳上的电子数是相同的,因而他们的化学性质相似。

于是,元素周期率的叙述由元素的性质是原子量的周期函数改为元素的性质是原子序数的周期函数。

有了对元素周期律的新认识,许多原来不能解释的现象可以解释了。门捷列夫在元素周期表中把钴和镍、碲和碘的位置颠倒了,他以为是它们的原子量测得不准,可是却一直找不出错来。现在真相大白了,原来按照原子序数的顺序,它们正好该如此排列。

门捷列夫发现元素周期律,是化学史上一个重要的里程碑。他把几百年来大量的化学知识系统化起来了,形成了一个有内在联系的统一的体系,并上升为理论,大大推动了化学的发展。

今天,尽管元素周期律被赋予了新的意义,尽管元素及它们的化合物的性质用元素周期律已不能完全概括,但元素周期律对研究和应用化学依然有着重要的指导意义,它仍然是我们认识世界、改造世界的重要阶梯。

物理化学的开创

奥斯特瓦尔德(Friedrich Wilhelm Ostwald,1853~1932),德国化学家,奥斯特瓦尔德是物理化学的创始人之一,1853年9月2日生于拉脱维亚的里加。他家境十分贫寒,父亲是一个一贫如洗的手艺人,母亲是一个贫穷的面包师的女儿。多年的流浪经历使父亲备尝艰辛,他定下了一条不成文的家规:宁可做出最大的牺牲,也要为孩子出人头地提供一切机会。也许就是这条家规,促使奥斯特瓦尔德在青少年时期就充分发展了未来创造者的个性和才能。

10岁的奥斯特瓦尔德进入了里加的一所中学。头一年,奥斯特瓦尔德还是一个遵守课堂纪律、听从教导的好学生,后来,他兴趣日益广泛起来,他亲手制作的焰火发出五彩缤纷的光芒,他亲手洗印照片,还没有上过化学课,就总是寻找各种机会亲自动手做化学实验。这么多的兴趣、爱好,分散了他的时间和精力,当然难以埋头学业,就这样,这位未来举世闻名的化学大师,5年制的中学,他却读了7年!尽管广泛的爱好一度耽误了他的学业,但双亲的支持和宽容,没有给他造成更大的心理负担。

奥斯特瓦尔德艰难地迈进中学教育的门槛,1872年入爱沙尼亚多帕特大学学习。大学学制3年,他仅用了一年半时间就读完了大学课程,显示了他非凡的才能。1878年奥斯特瓦尔德获得化学博士学位。1881年,28岁的奥斯特瓦尔德应聘担任里加工学院的化学教授。

奥斯特瓦尔德在化学动力学研究方面,造诣很深。在里加工学院期间,他把研究触角伸到了化学反应速度、催化作用、化学反应转化率等许多方面。

1884年,不仅是奥斯特瓦尔德科研的丰收之年,也是他发现了名不见经传的瑞典年轻人阿累尼乌斯的一年。阿累尼乌斯的博士论文是关于电解质溶液方面的。

一开始,阿累尼乌斯的论文受到了包括门捷列夫、阿姆斯特朗等著名化学家的反对,奥斯特瓦尔德开始也认为他的电解质导电的概念纯粹是胡说八道。但经过进一步研究,奥斯特瓦尔德悟出了论文中的深奥哲理。

他在同年8月赴乌普萨拉,拜访了阿累尼乌斯。这次访问是他们毕生友谊和合作的开端。他们规划了一系列重大的物理化学研究项目,这些项目影响了20世纪化学发展的方向。人们把奥斯特瓦尔德、阿累尼乌斯、范霍夫三人,称为“物理化学三剑客”。

在创立物理化学的过程中,奥斯特瓦尔德的阐释、表达和写作能力,帮了他的两位伙伴的忙。阿累尼乌斯和范霍夫的工作也是经他的手才广为人知的。

在里加工学院,奥斯特瓦尔德开创了两项使他闻名于世的事业。一是出版《普通化学教程》,这部著作涉及的领域十分广泛,它创立了20世纪的普通化学和物理化学。另一件事,是奥斯特瓦尔德于1887年2月创办了《物理化学杂志》。奥斯特瓦尔德明智地认识到,一种专门杂志对于新学科的进一步发展,是必不可少的。该杂志成了科学界物理化学学科的喉舌,成为连接各国物理化学家的纽带。

1887年9月,奥斯特瓦尔德到德国著名大学莱比锡大学任物理化学教授,开始了他学术生涯的黄金时代,使他进入了科学史上屈指可数的伟大科学家的行列。

莱比锡大学的条件无疑是优越的。奥斯特瓦尔德的化学列车开始全速前进了。他在莱比锡建立的著名学派,主要以阿累尼乌斯的电离理论、范霍夫的溶液渗透理论以及热力学对溶液和化学平衡的应用为基础。

但是,这一切与他1888年发现的稀释定律贡献相比,又相形见绌。该定律的历史意义在于,质量作用定律首次被用于弱有机酸和弱碱稀溶液。奥斯特瓦尔德稀释定律,最先将质量作用定律应用于电离上,在历史上起了重要作用。

1894年,奥斯特瓦尔德立足于离子平衡原理,提出了酸碱指示剂理论,最先对酸碱指示剂的变色机理给予解释,奥斯特瓦尔德指示剂理论到现在还为分析化学所采用。同年,奥斯特瓦尔德建议将分析化学的反应看成是离子间的相互作用。他提出过错误的“唯能论”,后来在实验事实面前,他修正了自己的观点。

19世纪的最后10年,奥斯特瓦尔德还对催化作用进行了系统的定量研究,揭示了催化剂的特点及规律。1898年奥斯特瓦尔德兼物理化学研究所所长。1902年,他发明了由氨经过催化氧化制造硝酸的方法,后称奥斯特瓦尔德法。同年,奥斯特瓦尔德的研究成果《论催化作用》出版,震动了整个化学界。奥斯特瓦尔德指出:催化剂只能改变化学反应速率而不能影响化学平衡,它的催化作用是由于降低了活化能的缘故。正是鉴于“在催化作用与化学平衡和反应速率方面的工作,以及由氨制硝酸的方法”等贡献,奥斯特瓦尔德荣获了1909年的诺贝尔化学奖。

在莱比锡大学时期,奥斯特瓦尔德在物理化学建设方面做了大量细致的工作。首先是教科书的建设。他编著的《电化学:它的历史和学说》,是一本长达1100页的巨著。《实用物理化学测量手册》则为人们提供了方便实用的实验工具书。其次是物理化学研究机构的建设。奥斯特瓦尔德除担任专门的化学联合会的领导之外,还创立了德国电化学学会,并出任第一届主席。

1906年夏天,53岁的奥斯特瓦尔德提前退休了。奥斯特瓦尔德年老时还致力于研究颜色学,这使他成为20世纪起主导作用的颜色学研究者之一。1932年4月4日,奥斯特瓦尔德卒于莱比锡。

奥斯特瓦尔德将物理化学建成化学的一个独立分支,他是物理化学的奠基人,他所开创的物理化学领域,正日新月异地向前发展。

薛定谔方程的发现

和20世纪来临相伴随的是一场深刻的物理学革命。从此,古典物理学让位于现代物理学。现代物理学的基础和框架是什么呢?是量子力学。量子力学发端于爱因斯坦的相对论和普朗克的量子论,继之以玻尔的原子结构论,完成于20年代中期的薛定谔方程。普朗克称薛定谔方程“奠定了现代量子力学的基础”。

薛定谔(1887~1961),奥地利物理学家,为发展量子力学作出了重大的贡献,因建立描述电子和其他亚原粒子的运动状态的波动方式,而与狄拉克共获1933年诺贝尔物理学奖。他是怎样创造出“奠定现代量子力学基础”的方程式的呢?在科技高度发展的现代,薛定谔仍是物理学出版刊物中出现频率颇高的学者,他推开了波动力学的大门。

薛氏1887年8月12日出生于维也纳一个手工业者家庭。老薛定谔是一个文质彬彬的绅士,他受过多种教育,热爱自然科学和艺术,有深厚的文化修养,幼年的薛定谔受到父亲的深刻影响。

薛定谔只进过一次小学的校门,时间不足两个月,他的启蒙教育主要是由家庭教师和父亲担任。儿童时代的薛定谔就能流畅地使用英语等多种语言,11岁时,薛定谔进入了维也纳高等专科学校的预科。这时的薛定谔已经偏重于发展对自然科学的兴趣与爱好,表面上他是一个各方面都无可挑剔的好学生,内心里却只偏爱数学和物理。最终,这名一直受到各科老师宠爱的学生,进入维也纳大学物理学院。在那里有著名的物理学家哈泽诺尔和实验物理学家埃克斯纳。

1910年,薛定谔在哈泽诺尔指导下,获得了博士学位。毕业后他幸运地留校担任埃克斯纳的助手。在这一时期,薛定谔受到了实验科学方面的严格训练,获得国家科学的大奖。哈泽诺尔和埃克斯纳终于把薛定谔铸造成了一位新的科学大师,就像他们的老师玻尔兹曼一样。

经过几次调动后,薛定谔最后落脚在瑞士风光美丽的旅游城市苏黎世,他的生命交响乐中最辉煌的主旋律开始了。但是温馨恬静的苏黎世,并没有成为科学家的世外桃源,物理学的黑色风暴开始席卷整个欧洲。

当卢瑟福发现原子结构以后,1913年他的学生玻尔把量子论与经典电磁理论结合,成功地提出了原子结构的量子理论,特别是用轨道量子化比较理想地解释了实验现象。

玻尔理论是量子理论发展的一座里程碑,后来,德国物理学家海森堡等人从原子光谱数据的内在联系出发,建立了描述微观粒子状态的矩阵力学,才突破了理论上的旧格局。

薛定谔主要是在第一次世界大战后开始关心原子结构问题的,他对玻尔的理论很不满意。他一方面应用玻尔量子论从事研究,一方面试图发展它、突破它。从1919~1923年,薛定谔涉足了原子结构的几乎所有领域,取得了一系列扫清外围障碍式的科研成果。他坚持认为,玻尔理论应作为某种本征值问题自然导出,但却苦于无法找到适当的突破口。

1924年,法国物理学家德布罗意的波粒二象理论,为薛定谔建立波动力学打开了第一扇大门。而爱因斯坦从德布罗意的理论中悟出了真理,并发表了关于理想气体量子统计的论文,这引起了薛定谔的注意。

从1926年1月26日到6月22日,薛定谔接连发表了6篇关于量子力学的论文,这些论文融玻尔理论、海森堡矩阵力学、哈密顿相似关系和德布罗意波理论为一炉,从而使波动力学成为一个有效的完整体系。

怎样描述原子内部电子运动的状况,从汤姆逊发现阴极射线粒子流即电子以后,一直困扰着物理学家。现在问题解决了,了解电子的运动状况,只要用薛定谔方程就可以解出。薛定谔方程对于核外电子的运动,如同牛顿三定律对于宏观物体的运动一样。这就是薛定谔方程的地位。

波动力学的问世,在物理学界引起了轰动,受到大多数物理学家的赞赏并得到广泛运用。它不像矩阵力学那样遭人冷遇,因为波动力学采用的是经典理论常用的偏微分方程描述方法和易于理解的概念,这是大多数物理学家所熟悉的。

薛定谔晚年一直致力于用量子力学来促使生物学和物理学的统一研究,用波动力学的最新成就和方法分析生命现象。1944年,薛定谔的《生命是什么》一书出版。这本不足100页的小册子在科学界再次引起了“薛定谔轰动”,极大地推动了量子生物学的发展。

《生命是什么》一书引起的轰动,不亚于18年前的波动力学方程的建立。作为量子力学创始人之一的薛定谔,提出用热力学和量子力学研究生命的本质,预告了生物学革命新时代的黎明。《生命是什么》的出版很快吸引了一大批年轻物理学家进入这个充满胜利希望的前沿阵地。

光散射效应的发现

水是无色透明的,大气也是无色透明的,但大海是蓝的,天也呈现蔚蓝色,这是什么原因呢?第一个对此给予正确解释的是拉曼。拉曼(1888~1970),印度物理学家,因发现光通过透明物质时波长发生一定变化,荣获1930年诺贝尔物理学奖。

拉曼1888年11月7日出生于印度南部的蒂鲁吉拉伯利,他的家庭属于印度婆罗门教。拉曼小时候是个神童,12岁就以优异成绩通过升学考试,进入马德拉斯大学的一所学院。

1904年,拉曼16岁时获得物理学学士学位,他的成绩在全体学生中名列第一,因此获得学校颁发的物理学金质奖章。三年后,他又顺利获得了数学硕士学位。1906年,拉曼在英国权威科学刊物上发表了第一篇有关数理方面的学术论文。

1917年的一天,加尔各答大学副校长穆柯伊爵士在一次集会上,结识了年轻的拉曼。他十分赏识拉曼的才华,当他了解拉曼在独立进行科学研究,已发表了三十余篇很有价值的研究论文时,更加赞叹不已,邀请拉曼到加尔各答就职。

在加尔各答大学,拉曼夜以继日地进行声学和光学的研究。很快,他取得了出色的研究成果,引起了英国科学界的注意。当时的印度属于英国的附属殖民地,拉曼心中燃烧着炽热的爱国主义情感,认为欧洲人能办到的事,印度人也能办到。1921年,拉曼代表加尔各答大学出席了在牛津召开的英国大学会议,会上他为皇家学会作了科研报告,备受人们的欢迎。

在取道地中海回国的途中,他偶然听到一对母子对话,这促成了他科学研究的新转折。轮船穿过直布罗陀海峡进入了一碧万顷的地中海,蔚蓝色的海面风平浪静,一位印度年轻母亲领着八九岁的小男孩,正在谈话——

“妈妈,这个大海叫什么名字?”

“地中海!”

“为什么叫地中海?”

“因为它夹在欧亚大陆和非洲大陆之间。”显然,这个小男孩是聪明好学的,他引起了拉曼的注意。

“妈妈,大海为什么是蓝色的?”碧蓝的海水成了小男孩疑问的对象。慈爱的妈妈一时语塞,她只好向拉曼投去求援的目光。拉曼蹲下身来,亲切地牵着小男孩的手,说:“小朋友,海水之所以呈现蓝色,是因为它反射了天空的蓝色。”孩子的问题解决了,可是疑问却压在了拉曼的心头。刚刚回到加尔各答,拉曼立刻着手研究海水为什么呈现蓝色的课题。拉曼把这样一个日常生活中常见的问题作为光线散射与水分子关系的典型物理现象,通过大量的实验,他获得了成功。在1922年《英国皇家学会会报》上发表了论文,他用细致的分析证明了水分子对光线的散射使海水显出颜色的机理,它与大气分子散射太阳光而使天空呈现蓝色的机理完全相同。拉曼从研究海水蓝色的普通常识出发,进而深入到分子与光线散射相互作用的科学前沿。

拉曼运用爱因斯坦等人的涨落理论进行研究,观察光线穿过净水、冰块及其他材料时的散射现象,取得了充分的实验数据,最后他成了散射问题专家。

20世纪初,德国科学家普朗克提出了量子论,爱因斯坦继而提出光量子的概念,从这些理论研究的进展中,人们逐渐认识到光的粒子性。拉曼的伟大贡献,就是为科学界最后接受这一观念提供了强有力的证据。

拉曼从1919年开始研究散射问题,他取得的第一项重要成果,是形成海水颜色的分子散射理论。1923年4月,他与助手一起研究光被其他物质散射时,分别在固体、液体和气体中发现了一种普遍存在的光散射效应。后来人们为了纪念拉曼,把这种光散射效应称为“拉曼效应”。新发现很快传遍了世界各地,人们普遍认识到这一发现对量子力学和相对论的巨大意义。

拉曼效应的发现为研究物理结构提供了一种有效的手段,因而也为全世界的科学研究开辟了一条新的道路,拉曼因此在1930年荣获了诺贝尔物理学奖。

1970年10月,拉曼这位伟大的印度科学家与世长辞了,享年82岁。