书城小说走进科学
7756600000033

第33章 数学大发现

数的善与恶

一提起毕达哥拉斯的名字,人们首先想到的是他那著名的定理,按照这个定理,直角三角形的两条直角边的平方和等于斜边的平方。除了这个定理以外,毕达哥拉斯是否还有什么别的发现,就很少有人知道了,可是,大家却都知道这个定理正是属于毕达哥拉斯的。

但是最令人诧异的是,我们甚至没有充分的把握说世界上是否曾经确实有过毕达哥拉斯这样一个人。关于他,人们编造了那么多荒唐的故事,只有幼稚无知的人才会对此信以为真。其中有这样一个情节:有一天,毕达哥拉斯散步来到河边。河流赶紧从河槽里出来,并且高呼:“你好哇!毕达哥拉斯!”这类传说的真伪,不言自明。

我们现在仅仅知道,在公元前6世纪这段和毕达哥拉斯的生活有关的时间里,古希腊有一所大型的哲学数学学校,人们把这所学校的学生称为毕达哥拉斯的信徒。这所学校所发生的一切事情都隐藏在秘幕之后。毕达哥拉斯学派的信徒们遵循所承担的某种义务,把他们取得的所有成果都妄加在他们超人的老师毕达哥拉斯一个人的头上。可是,很可能实际上根本不存在这个什么“超人”的老师。

在人类社会的历史中,不止一次地遇到过类似的现象。例如,就在今天,有一个法国数学家小组把自己所有的著作都用尼古拉苯了巴吉这同一个名字出版。大家知道,没有一位数学家叫这个名字,可是,这个小组的成员都情愿做这样的游戏,他们发表意见时,从来不提整个的小组,而只用苯了巴吉一个人的名义。

另一个是尽人皆知的科济马普鲁特科夫。在上一个世纪,三位俄罗斯作家——热姆楚日尼科夫兄弟和阿卡托尔斯泰,就用这个笔名发表作品,他们塑造了这么一个不可救药的好发表长篇议论的人物形象,他善于以惊人的庄重煞有介事地说出一些老生常谈。他们甚至还虚构了一份普鲁特科夫的履历。

可是,如果说人们现在知道实际上并不存在苯了巴吉和科济马普鲁特科夫这样的人,那么,在毕达哥拉斯这个问题上,我们就没有这种把握,因为我们和所研究的那个时代相隔2500年之久。我们只能说:不能排除这种情况,即作为一个人,毕达哥拉斯并不存在。但我们确信:冠以毕达哥拉斯名字的定理是巴比伦人在他一千多年以前发现的。很可能像已经指出过的那样,埃及人也熟悉这个定理。当然,不能排除毕达哥拉斯学派的门徒们独立于巴比伦人或埃及人单独地发现了这个定理的情况,但无可争议的是,这一发现的优先权不属于毕达哥拉斯学派。

有趣的是,尽管我们连实际上是否有过毕达哥拉斯这个人都没有把握断定,我们却拥有他相当详细而又引人注目的传记。据说,在公元前580年,毕达哥拉斯出生于萨莫斯岛,人们因此称他为毕达哥拉斯萨摩斯基,以免和另一个叫毕达哥拉斯列基斯基的雕刻家相混淆(后者也出生于萨莫斯,但是在列基亚城生活和工作)。按照当时许多富有的年轻人的惯例,毕达哥拉斯年轻时曾经多次进行对他颇为有益的旅行。他游历过巴比伦、地中海东岸各国和埃及。他在埃及时,正值波斯国王冈比希侵略这个国家。在一座高大的金字塔的石墙附近,毕达哥拉斯和其他人一起被俘。可能和别人一样,有一段时间他变成了奴隶。可是,他作为一位圣贤和术士的声望在当时已经如此之高,以至于当冈比希国王得知是谁成为他的俘虏时,当即就命令马上释放毕达哥拉斯,而且可以断定,还极为诚挚地向他道了歉。

当毕达哥拉斯返回故乡萨莫斯时,人们把他当作一位伟大的学者和术士来欢迎。据说,他从到东方游历那时起,就接受了穿当时迦勒底术士所穿的豪华的衣服的习惯。这种衣服其中一个主要部分就是有一条华美的头饰。有一幅毕达哥拉斯的画像,画的就是戴着外国式样的华丽的赫拉克勒斯(希腊神话中最伟大的英雄)式的威武的形象。可是,即使我们假定有毕达哥拉斯这个人,他是否是画像中的那样,是谁也没有把握断定的。

萨莫斯岛上的青年开始聚集在这位圣贤的周围。这些青年大都出身于贵族家庭。这样,就成立了学校。这所学校的一切都仿照东方的习俗,笼罩着不可思议的神秘气氛。例如,据说不是所有的毕达哥拉斯门生都有资格见到自己的老师。那些既有资格见到老师,又有资格听他教诲的,才是名副其实的学生。而那些只有资格听课,却见不到老师的,被称为旁听生。有些杜撰毕达哥拉斯传记细节的无聊作者由此推断说,毕达哥拉斯教书的房间是用麻布一隔两半的,老师本人所在的那半间坐着学生,另半间留给旁听生用。

在学校学一些什么呢?主要是哲学和数学。古希腊时代,这两个学科不像我们今天所看到的这样彼此分开。当时,每一位哲学家通常也是数学家,反之亦然。然而,对于毕达哥拉斯学派的门徒们来说,这种哲学—数学具有这样一种先验的、神秘的性质,其中有许多东西既来自于轮回(关于灵魂转世的神秘学说),又来自于迦勒底人的神秘(关于数的神秘性质的学说),等等。

可是,聚集在毕达哥拉斯周围的年轻人很少只是学习科学。他们很快就介入岛上的政治生活,而置萨莫斯岛的独裁者波利克拉特的态度于不顾。“独裁者”这个词,在当时还没有它后来所获得的基本意义。当时的独裁者通常是普通市民,也就是人民利益的代表,因此是反对贵族的。毕达哥拉斯的门徒们的贵族倾向不合波利克拉特的意,他们的学校很快就被捣毁了。神秘数学的信徒们连同他们超人的老师一起,被迫从岛上逃跑了。他们很可能是沿着整个地中海迁移。他们大部分定居在被称为伟大国家的希腊。亚平宁半岛的南部和西西里岛也因此而获得了伟大的称号。毕达哥拉斯本人定居在塔连特,他在那里又当上了校长。年轻人又像在萨莫斯那样聚集在他的周围,可是,这所学校遭到了和萨莫斯岛上的那所学校同样的命运。毕达哥拉斯迁移到科罗多尼,又从那里跑到米太旁登,他80岁或者90岁时,死于米太旁登街道上的一次夜间搏斗之中。

毕达哥拉斯学派特别喜爱的数学领域之一是数论。当时,吸引他们的乃是数的某些符合他们带有东方神秘色彩的神秘哲学的性质。

毕达哥拉斯学派认为,世界上的一切都服从于整数的比数所服从的那样的规律。他们发现,在用力相等的情况下,弦长的比数等于像2:3、3:4等等自然数的比数时,各弦就同时发出谐音。他们把这种局部的现象推及到整个宇宙。这样,按照他们的学说,地球、月亮、当时已知的所有的行星以及太阳都围绕着某个中心火球的球面旋转。这些球面的半径同样也有和发出谐音的弦长那样的比数。任何可以列举出来的宇宙中的物体,在其运动时似乎也都发出这样的谐音。

尽管毕达哥拉斯学派的宇宙构造论带有神秘的性质,尽管毕达哥拉斯学派所指的这个中心不是太阳,而是某个不存在的中心火球,但地球围绕着某个中心旋转的思想却是正确的。

毕达哥拉斯学派把所有的整数分为善的和恶的两种。奇数为善的,偶数为恶的。单位数1被认为既是善的又是恶的开始,因为善的奇数加上它就变成为恶的数,而恶的偶数加上它就变成为善的奇数。

毕达哥拉斯学派思想中的许多东西在数学中得到了进一步的发展。从毕达哥拉斯学派所研究的数论中自然提出了许多问题,由此导出了非常重要而又难以得到的结果。

也就是在毕达哥拉斯学派正陶醉于这种宇宙的整数谐音的时候,他们发现,原来还有一些不能写成整数的比数的数。例如,2就是这样一个数。这使他们如闻霹雳,大为震惊。

为了回答这个问题,我们还是回到毕达哥拉斯定理上来。我们不禁想到,一个直角三角形的两条直角边的平方和等于斜边的平方。这里,我们会取一个每条直角边都等于1的等腰直角三角形。那么,根据上述定理,斜边的平方等于2,因此斜边本身等于2.但是,2不可能写成两个整数的比数。今天,都知道这个数是无理数。毕达哥拉斯学派自己显然没有明确的无理数的概念,但是他们发现了这样一个事实,就是有些线段的长度无法使它们和整数的比数相等。这一发现从根本上和他们的“整数”哲学相抵触。他们怎么办呢?除了他们心里想到的以外,什么也没有做。他们设法隐瞒了自己的发现,不让未得真传的人们知道。没有无理数!什么也没有!有的只是整数和它们的比数!

然而,想瞒也瞒不住,谁也无法长期隐瞒这一发现,过了一段时间,无理数的秘密就开始被不是毕达哥拉斯学生的那些人知道了。据说,这个秘密是被毕达哥拉斯的一个名叫基普帕斯的学生泄露出去的。从毕达哥拉斯学派的观点来看,这是骇人听闻的罪行!要知道,他们每个人入学时,都庄严地宣誓要始终严守秘密,然后才能允许入学。现在却出现了违背这一誓言的罪人。怎样处置他呢?毕达哥拉斯的门徒们祈求神灵的帮助。当基普帕斯的船队载着大量的货物返回故乡的港湾时,海神普赛登使他遭受到了可怕的暴风雨。暴风雨开始冲散了船队,然后使船连同船主一起沉没。这个传说当然是毕达哥拉斯的门徒们自己编造出来的。

显然,很难想象一个埃及人如果知道了有什么长度不能用整数的比数来表示,他们会多么忧愁。埃及人还根本不能把类似的事实当作具有原则意义的事实,他们没有达到这样的数学程度。到了毕达哥拉斯时,这些事实的原则上的重要性已经充分地认识到了。这时,对于我们下面要研究的那些问题已经产生了兴趣。从它的实用价值来看,这些问题可能被认为是不重要的,但在作为一种科学理论的数学中,却是非常重要和必要的。

不应当这样认为:不能直接从某一个科学的事实中得到利益,就只能使这个事实成为理论的财富。理论本身是人类实践活动的产物,对于理论具有价值的东西,从实践这个词最直接的意义上来说,归根到底,对于实践也是重要的。

圆面积之谜

怎样求圆面积?我们现在有公式可用,很快就算出来了。但是在漫长的年代里,人们为了研究和解决这个问题,不知遇到了多少艰难和困苦,花费了多少精力和时间。

割补求面积

在平面图形中,以长方形的面积最容易求了。用大小一样的正方形砖铺垫长方形地面,如果横向用八块,纵向用六块,那一共就用了8×6=48块砖。所以求长方形面积的公式是:长×宽。

求平行四边形的面积,可以用割补的方法,把它变成一个与它面积相等的长方形。长方形的长和宽,就是平行四边形的底和高。所以求平行四边形面积的公式是:底×高。

求三角形的面积,可以对接上一个和它全等的三角形,成为一个平行四边形。这样,三角形的面积,就等于和它同底同高的平行四边形面积的一半。所以求三角形面积的公式是:12×底×高。

任何一个多边形,因为可以分割成若干个三角形,所以它的面积,就等于这些三角形面积的和。

四千多年前修建的埃及胡夫金字塔,底座是一个正方形,占地五万二千九百平方米。它的底座边长和角度计算十分准确,误差很小,可见当时测算大面积的技术水平很高。

古老的难题

圆是最重要的曲边形。古埃及人把它看成是神赐予人的神圣图形。怎样求圆的面积,是数学对人类智慧的一次考验。

也许你会想,既然正方形的面积那么容易求,我们只要想办法做出一个正方形,使它的面积恰好等于圆面积就行了。你的想法很好,可是要做出这样的正方形很难啊。

你知道古代三大几何难题吗?其中的一个,就是你刚才想到的化圆为方。这个起源于古希腊的几何作图题,在两千多年间,不知难倒了多少能人,直到19世纪,人们才证明了这个几何题,是根本不可能用圆规和无刻度的直尺作出来的。

化圆为方这条路走不通,人们不得不开动脑筋,另找出路。

我国古代的数学家,从圆内接正六边形入手,让边数成倍增加,用圆内接正多边形的面积去逼近圆面积。

古希腊的数学家,从圆内接正多边形和外切正多边形同时入手,不断增加它们的边数,从里外两个方面去逼近圆面积。

古印度的数学家,采用类似切西瓜的办法,把圆切成许多小瓣,再把这些小瓣对接成一个长方形,用长方形的面积去代替圆面积。

他们煞费苦心,巧妙构思,不怕困难,为求圆面积作出了十分宝贵的贡献。

酒桶的学问

16世纪的德国天文学家开普勒,是一个重视观察、肯动脑筋的人。他曾把丹麦天文学家第谷遗留下来的大量天文观测资料,认真地进行整理分析,提出了著名的“开普勒三定律”。开普勒第一次告诉人们,地球围绕太阳运行的轨道是一个椭圆,太阳位于其中的一个焦点上。

开普勒当过数学教师,他对求面积的问题非常感兴趣,曾进行过深入的研究。他想,古代数学家用分割的方法去求圆面积,所得到的结果都是近似值。为了提高近似的程度,他们不断增加分割的次数。但是,不管分割多少次,几千几万,只要是有限次,所求出来的总是圆面积的近似值。要想求出圆面积的精确值,必须分割无穷多次,把圆分成无穷多等分才行。

开普勒也模仿切西瓜的方法,把圆分割成许多小扇形;不同的是,他一上来就把圆分成无穷多个小扇形。

因为这些小扇形太小了,小弧AB也太短了,所以开普勒就把小弧AB和小弦AB看成是相等的,即AB=AB。

这样一来,小扇形AOB就变成为小三角形AOB了;而小三角形AOB的高就是圆的半径R。于是,开普勒就得到:

小扇形AOB的面积=小三角形AOB的面积=12R×AB。

圆面积等于无穷多个小扇形面积的和,所以

圆面积S=12R×AB 12R×BC 12R×CD ……

=12R×(AB BC CD ……)

=12R×(AB BC CD ……)

在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有

S=12R×2πR=πR2

这就是我们熟悉的圆面积公式。

开普勒运用无穷分割法,求出了许多图形的面积。1615年,他把自己创造的这种求面积的新方法,发表在《葡萄酒桶的立体几何》一书中。

这个奇怪的书名是有来由的。有一天,开普勒到酒店去喝酒,发现奥地利的葡萄酒桶,和他家乡莱茵的葡萄酒桶不一样。他想,奥地利葡萄酒桶为什么偏要做成这个样子呢?高一点好不好?扁一点行不行?这里面会不会有什么学问?经过研究,开普勒发现,当圆柱形酒桶的截面ABCD的对角线长度固定时,比如等于m,以底圆直径和高的比为2时体积最大,装酒最多。奥地利的葡萄酒桶,恰好是按这个比例做成的。这一意外发现,使开普勒非常高兴,决定给这本关于求面积和体积的书,起名为《葡萄酒桶的立体几何》。

在这本书中,开普勒除介绍了他求面积的新方法外,还介绍了他求出的近百个旋转体的体积。比如,他计算了圆弧绕着弦旋转一周,所产生的各种旋转体的体积。这些旋转体的形状,有的像苹果,有的像柠檬,有的像葫芦。

开普勒大胆地把圆分割成无穷多个小扇形,又果敢地断言:无穷小的扇形面积,和它对应的无穷小的三角形面积相等。他在前人求面积的基础上,向前迈出了重要的一步。

《葡萄酒桶的立体几何》一书,很快在欧洲流传开了。数学家高度评价开普勒的工作,称赞这本书是人们创造求面积和体积新方法的灵感源泉。

一种新的理论,在开始的时候很难十全十美。开普勒创造的求面积的新方法,引起了一些人的怀疑。他们问道:开普勒分割出来的无穷多个小扇形,它的面积究竟等于不等于零?如果等于零,半径OA和半径OB就必然重合,小扇形OAB就不存在了;如果它的面积不等于零,小扇形OAB与小三角形OAB的面积就不会相等。开普勒把两者看作相等就不对了。

面对别人提出的问题,开普勒自己也说不清楚。

卡瓦利里的方法

卡瓦利里是意大利物理学家伽利略的学生,他研究了开普勒求面积方法中的问题。

卡瓦利里想,开普勒把圆分成无穷多个小扇形,这每个小扇形的面积到底等于不等于零,就不好确定了。但是,只要小扇形还是图形,它是可以再分的呀。开普勒为什么不再继续分下去了呢?要是真的再细分下去,那分到什么程度为止呢?这些问题,使卡瓦利里陷入了沉思之中。

有一天,当卡瓦利里的目光落到自己的衣服上时,他忽然灵机一动:唉,布不是可以看成为面积嘛!布是由棉线织成的,要是把布拆开的话,拆到棉线就为止了。我们要是把面积也像布一样拆开,拆到哪儿为止呢?应该拆到直线为止。几何学规定直线没有宽度,把面积分到直线就应该不能再分了。于是,他把不能再细分的东西叫做“不可分量”。棉线是布的不可分量,直线是平面面积的不可分量。

卡瓦利里还进一步研究了体积的分割问题。他想,可以把长方体看成为一本书,组成书的每一页纸,应该是书的不可分量。这样,平面就应该是长方体体积的不可分量。几何学规定平面是没有薄厚的,这样想也是有道理的。

卡瓦利里紧紧抓住自己的想法,反复琢磨,提出了求面积和体积的新方法。

1635年,当《葡萄酒桶的立体几何》一书问世20周年的时候,意大利出版了卡瓦利里的《不可分量几何学》。在这本书中,卡瓦利里把点、线、面,分别看成是直线、平面、立体的不可分量;把直线看成是点的总和,把平面看成是直线的总和,把立体看成是平面的总和。

卡瓦利里怎样用不可分量求面积的呢?现在以椭圆为例,介绍如下:

椭圆有一条长轴和一条短轴,相交于O,把椭圆分成了四等份。

卡瓦利里设a和b是长轴和短轴的一半;以椭圆中心O为圆心,以b为半径,在椭圆内作一个圆。

他根据不可分量的想法,把椭圆面积的四分之一,看成是由无穷多条平行于a的线段组成,每一条线段与圆交于一点。

卡瓦利里根据椭圆的性质推出,任一条和a平行的线段MN,与圆交于P,一定有

MPMN=ba

他把这样引出的无穷多条平行线段,由小到大编上M1N1,M2N2,M3N3……就可以得到一大串比例式

M1P1M1N1=M2P2M2N2=M3P3M3N3=……=ba

比例有这样一个性质:如果ab=cd成立,那么a cb d=cd也成立。他利用比例的这个性质,就得到

M1P1 M2N2 M3P3 ……M1N1 M2N2 M3N3 ……=ba

在卡瓦利里看来,分子的和就是圆面积的四分之一,分母的和就是椭圆面积的四分之一。

因为14圆面积14椭圆面积=圆面积椭圆面积=ba

即πb2椭圆面积=ba

所以,椭圆面积=πab

这就是我们现在求椭圆面积的公式。

卡瓦利里使用不可分量的方法,求出了许多前人不会求的面积,受到了人们的拥护和尊敬。

卡瓦利里还根据不可分量的方法指出,两本书的外形虽然不一样,但是,只要页数相同,薄厚相同,而且每一页的面积也相等,那么,这两本书的体积就应该相等。他认为这个道理,适用于所有的立体,并且用这个道理求出了很多立体的体积。这就是有名的“卡瓦利里原理”。

事实上,最先提出这个原理的,是我国数学家祖日恒。祖日恒是祖冲之的儿子,生于公元5到6世纪,比卡瓦利里早一千多年,所以我们叫它“祖日恒原理”或者“祖日恒定理”。

荒谬的结果

卡瓦利里的《不可分量几何学》一书,也受到了一些人的责难。原因是使用不可分量的方法,可以推出任意两个三角形的面积相等。

他们说,任意作一个两腰不相等的三角形ABC,由顶点A向对边BC引高线AD,AD把△ABC分成大小不等的△ABD和△ADC。显然,△ABD的面积大于△ADC的面积。

用不可分量的方法,把△ABD看成是由无穷多条平行于高AD的线段M1N1,M2N2,M3N3……组成的,写成式子就是

△ABD的面积=M1N1 M2N2 M3N3 ……

边AB边上的N1,N2,N3……点,分别引平行于底边CB的直线,交AC边于N1,N2,N3……再过N1′,N2′,N3′……点,引垂直于BC边的线段N1′M1′,N2′M2′,N3′M3′……由上面的作法得到

M1N1=M1′N1′,M2N2=M2′N2′,M3N3=M3′N3′……

根据不可分量的方法,△ADC的面积又可以看作是由无穷多条平行线段M1′N1′,M2′N2′,M3′N3′……组成的,所以有等式

△ADC的面积=M1′N1′ M2′N2′ M3′N3′ ……

=M1N1 M2N2 M3N3 ……

=△ABD的面积

看来不可分量的方法,一定存在着什么漏洞。不然的话,怎么会推出这样荒谬的结果呢?

问题出在哪儿呢?

难求的速度

谁都知道飞机快,火车慢,自行车更慢。可是人们对各种速度的认识,并不都是这么简单明白,没有争论。

谁先落地

两件轻重不同的东西,同时从楼上自由下落,哪个先着地?你可能说重的先着地,也可能说重的轻的一起着地,究竟哪个回答对呢?

这个问题,人们很早就注意到了。公元前三百多年,古希腊有个哲学家叫亚里士多德,他认为轻重不同的两件物体,从同一高度自由下落,一定是重物先着地。亚里士多德的名气很大,“先哲”的话当然不会错,所以人们把重物先着地的说法当作真理,信奉了2000年。

16世纪末,比利时的工程师斯台文指出,重物先着地的说法是错误的。他说,在不考虑空气阻力的情况下,轻重不同的物体应该同时着地。斯台文还作了实验,他拿轻重不同的两件物体,从十米高处同时自由下落,结果是同时着地。

一个不知名的人竟敢说“先哲”的话错了,竟敢说人们把这个问题认识错了2000年,哪里会有人信哩!

著名的比萨斜塔实验

真理和谬误不容颠倒。继斯台文之后,意大利物理学家伽利略,继续向亚里士多德的错误发起进攻。

与斯台文一样,伽利略也认为轻重不同的物体应该同时着地。为了回答保守势力的反对,他于1590年作了一次自由落体实验。

在意大利比萨城郊有一座倾斜的古塔,伽利略就选择这个斜塔作为实验场地,邀请了许多人来参观,进行了著名的“比萨斜塔实验”。伽利略让一个一磅重和一个一百磅重的两个铅球,同时由塔顶自由落下,只听见“咚”的一声响,两个铅球同时着地了。这“咚”的一声,宣布了伽利略的胜利,同时也宣告了亚里士多德统治人们将近2000年的错误理论彻底破产!

比萨斜塔实验,不但使人们承认了物体下落的速度,与物体本身的重量无关;而且还告诉人们,物体在自由下落的过程中,速度不是一成不变的,而是越往下落速度越快。

伽利略还通过实验发现,自由落体运动的速度变化是有规律的,这就是每过一秒钟增加约9.8米。因为自由落体是由静止开始下落,所以

第一秒末的速度=9.8米/秒;

第二秒末的速度=9.8 9.8=19.6米/秒。

如此等等。如果用g表示9.8,每过一秒,速度就增加一个g,过t秒,速度就变成为gt了。

伽利略第一次找到了关于自由落体运动的公式:

v(速度)=gt

s(路程)=12=gt2

伽利略把实验方法与数学计算结合起来,为物理学的研究开辟了新的方向。

变速运动

16世纪的欧洲人,认为炮弹是沿着折线飞行的,甚至在教科书里也这样讲。

为什么他们会这样认识呢?估计这是因为在放炮的人看来,炮弹总是沿着直线飞出去的;而在挨炮弹的人看来,炮弹也总是沿着直线从天而降。把两者合在一起,炮弹就成了按折线飞行的了。

伽利略通过实验和计算,告诉人们炮弹飞行的路线不是一条折线,而是一条曲线。他还给这条曲线取了一个形象的名字,叫做“抛物线”。与此同时,他还指出飞行中的炮弹和自由下落的物体一样,速度也在随时变化,是“变速运动”。

伽利略大胆构思,精心实验,并且用数学计算论证结论,一连纠正了人们的两个错误认识,为普及科学知识和引起人们对科学研究的兴趣,做出了可贵的贡献。

伽利略求速度的故事就讲到这里。这个故事给我们提出了一个既重要又有趣的问题:变速运动的速度随时变化,怎样正确理解和掌握变速运动的“瞬时速度”呢?

“飞矢不动”论

“瞬时”是一瞬间的意思。要正确理解物体运动的瞬时速度,首先要搞清楚什么是“一瞬间”。平时,我们爱用“一眨巴眼”来形容很短的时间。物理学上的“一瞬间”,可要比“一眨巴眼”短得多了。对于瞬时速度,我们可以先粗略地把它理解为:在非常、非常短的一丁点时间内,物体运动的速度。

仔细想想,你可能会问,物体运动离不开时间,如果时间非常、非常短,物体还能运动吗?

在很长的时期里,人们对瞬时速度是否存在,一直议论纷纷,争论不休。公元前4世纪,古希腊有个著名人物叫芝诺,他不但反对有瞬时速度,而且认为运动也是不可能存在的。

芝诺能言善辩,有人写诗形容他:“大哉芝诺,鼓舌如簧;无论你说什么,他总认为荒唐。”芝诺编造了许多诡辩问题,其中一个叫做“飞矢不动”。所谓诡辩,就是用貌似正确的方法,来论证错误的结论。“飞矢不动”的意思是说,飞行着的箭根本没动地方。

芝诺是这样来论证他的诡辩的:箭要由A点飞到B点,它首先要经过A、B的中点C。箭要由A飞到C,又先要飞到A、C的中点D,而A、D两点之间还有中点E。依此类推,不管两点距离多近,它们之间总还会有中点的。因为我们永远也找不到距离A点最近的中点,所以箭也就动不了。

“飞矢不动”的结论如此荒谬。但是,要从芝诺的论证中找出它的错误,却是十分困难的。可见当时人们对运动的认识还很不够。

掌握速度

17世纪的欧洲,由于远洋航行的兴起,枪炮的使用,人们越来越要求精确掌握物体运动的速度。

大炮射程的远近,一方面和大炮的仰角有关,另一方面和炮弹离开炮口那一瞬间的初速度有关。在仰角固定的情况下,初速度越大,炮弹飞行得越远。为了提高大炮的射程和命中率,必须准确掌握炮弹飞行的初速度。

远洋航行需要随时确定船只在大海中的位置。稍有差错,航行的方向不对头了,就可能引起船只沉没,船员死亡。当时使用的方法是观察日、月、星辰的位置,叫“天文导航”。但是,天体在运行,航船在前进,为了使天文导航准确可靠,必须准确知道行星和航船的速度。

此外,在17世纪发展起来的机械力学、流体力学等科学技术,也需要精确掌握运动的速度。

流木测速法

公元3世纪,我国三国时期的吴国,经常派船到东海和南海一带去。船只在茫茫的大海中航行,怎样知道航行的速度呢?他们的办法是:在船头把一块木板投入海中,然后从船头快速跑到船尾,记录下木板从船头到船尾的时间。船身的长度是知道的,比如船身长40米,除以木板从船头到达船尾的时间,比如10秒,就可以知道船速是4米/秒。

这样测量出来的速度对不对呢?如果海面风平浪静,船只又保持方向不变,速度不变,测量出来的速度是正确的。这样的运动叫做“匀速直线运动”。匀速直线运动的速度很好求,只要用距离s除以时间t,就得到物体在任一时刻的瞬时速度v,即v=st。

可是,风儿哪能不吹,海水哪能不动,船只在大海中航行,速度不可能是一成不变的,这时船的瞬时速度又怎样求呢?前面求得的4米/秒又算什么速度?为了解决这个问题,我们不妨先假定船是沿直线前进,是变速直线运动。在这种情况下,4米/秒虽然不是瞬时速度,可是还很有用,它代表船在十秒内的“平均速度”。

平均速度是什么意思呢?

比如说这学期,你们班的数学考过三次,你的成绩分别是84,85,92.为了对你这学期数学学习成绩有个总的了解,需要求出平均成绩:

(84 85 92)/3=87(分)。

尽管你在这三次考试中,没有一次得87分,但是,87分却表示了你这学期数学学习总的情况。平均速度的意思也是这样。

变速直线运动的平均速度也好求,我们可以先求出船在一段时间内的平均速度,然后再来想办法求瞬时速度。

瞬时速度

假设船由A出发,沿直线航行到了C,我们可以用靠拢的方法,来求船在B点的瞬时速度。

第一步,以B为起点,量出BD1(s1)=90米,记录船从B到D1所用时间t1=4秒。这样,我们可以求出船在BD1一段的平均速度v1:

v1=s1t1=904=22.5(米/秒)

第二步,缩短BD1的距离,取BD2(s2)=43米,记录船由B到D2的时间t2=2秒。这样,船在BD2一段的平均速度是v2:

v2=s2t2=433=21.5(米/秒)

BD2的距离比BD1小,平均速度v2,应该比平均速度v1更接近船在B点的瞬时速度。可以想像,随着距离s的不断缩短,求出来的平均速度v,应该越来越接近B点的瞬时速度。我们把距离缩短的过程和计算结果列成一个表:

距离(米)时间(秒)平均速度v(米/秒)90422.543221.5331.5721200.9620.8120.5820.67.840.3920.1

从表中可以看出,随着距离的不断缩短,船的平均速度越来越接近20米/秒。这样,我们自然会推想20米/秒,就应该是船过B点的瞬时速度。

你看,用平均速度去逼近瞬时速度,多么像用圆内接正多边形面积去逼近圆面积啊!

我国古代数学家用割圆的方法,只能求出圆面积的近似值。上面,我们用缩短距离的方法,也只能求出瞬时速度的近似值。可是我们要求的并不是近似值,而是瞬时速度本身。

当然,我们可以想方设法,尽量缩短测量距离,使求出来的平均速度,尽量接近瞬时速度。但是,我们也必须清楚地看到,只要距离s不等于零,用st算出来的平均速度,总要和瞬时速度相差那么一点。干脆让s=0吧,s=0了,t也必然等于零,这时st就变成为00了。这可不成啊,老师再三强调零不能作分母。

你看,瞬时速度就在眼前,离我们越来越近了,可就是眼巴巴地摸不着它。

世上无难事,只怕有心人。开普勒和卡瓦利里勇于革新,创造出了求面积的新方法;牛顿在求瞬时速度上,也作了大胆的尝试。

牛顿割尾巴

牛顿认真分析了平均速度和瞬时速度的关系,提出了计算瞬时速度的新方法。下面,我们来介绍一下牛顿的新方法:

假设有一只船从0点出发,作变速直线运动,一秒钟走了一米,二秒钟走了四米,三秒钟走了九米……分析一下上面几个数,船走过的距离,正好等于时间的平方。就是1秒钟走了12米,2秒钟走了22米,3秒钟走了32米……t秒钟走了t2米。s=t2,反映了这只船的运动规律。

现在,假设我们要求第二秒末的瞬时速度。

船在第二秒末走到了B点,B点距离O点4米。根据前面求瞬时速度的办法,求第二秒末的瞬时速度,需要先求出平均速度。我们不妨让船由B点再向前走一小段时间。

因为我们给出的时间很小很小,小得与众不同了,我们在t的前面加上一个希腊字母△(读delta),写成△t,好和一般的时间有所区别。

在时间△t内,船又向前走了多少米呢?这可以算出来,船2秒钟走了22米,(2 △t)秒走了(2 △t)2米。它们的差(2 △t)2——22,就是△t秒内船走过的距离。这个距离也很小,我们用类似的记号△s来表示,得到

△s=(2 △t)2——22

=〔22 2×2×△t (△t)2〕——22

=4△t (△t)2

这样,在△t秒内的平均速度v应该是:

v=△s△t=4△t (△t)2△t=4 △t(米/秒)

牛顿心里很清楚,只要△t不等于零,平均速度v总要带着一个小尾巴——△t。拖个小尾巴的蝌蚪,如果不去掉尾巴,就变不成青蛙;带小尾巴的平均速度,如果不去掉小尾巴△t,也永远变不成瞬时速度。

牛顿采取果断措施,大胆令最后结果中的△t=0,割掉了平均速度的尾巴。他认为割掉了尾巴的平均速度,就应该是瞬时速度。

用牛顿的方法,我们要求船在第二秒末的瞬时速度,只要令4 △t中的△t=0,割掉尾巴,就得到了第二秒末的瞬时速度4米/秒。

牛顿用这种割尾巴的办法,求出了很多变速运动的瞬时速度,经过实践的检验,结果都是对的。瞬时速度这个可望而不可及的东西,终于被牛顿智慧的手给捉住了!

牛顿割尾巴的新方法,推动了数学和物理学的研究和发展。

主教的诬蔑

科学反对迷信,冲击神权,是教会的死对头。牛顿求瞬时速度的新方法,遭到了教会的敌视和反对。

1734年,英国出版了大主教贝克莱写的一本书,正题叫《分析学者》,副题叫《致不信神的数学家》,恶毒攻击牛顿发明的新方法。

贝克莱说,牛顿在求瞬时速度的过程中,首先用△t除等式两边。因为数学上规定零不能作除数,所以作为除数的△t不能等于零;可是牛顿最后又采取割尾巴的方法,令△t等于零。这样,△t一会儿是零,一会儿又不是零,这不是自相矛盾吗?△t既然代表时间,它应该是一个数量。这个忽儿是零,忽儿又不是零,虚无缥缈、飘泊不定的数量△t,不正是我们教会里所说的鬼魂吗!不过它不是消失了肉体的人的鬼魂,而是消失了数量的量的鬼魂。

贝克莱对牛顿的攻击,完全是为了维护教会的神权统治。他说的什么“量的鬼魂”,纯粹是胡言乱语。但是,贝克莱却提出了一个值得重视的问题:△t到底是不是零?

前面讲到,开普勒把圆分成无穷多个小扇形,他说不清楚每个小扇形的面积到底是多小;卡瓦利里把面积看成是无穷多条线段的和,他也从未解释过,为什么没有宽度的线段能组成面积。现在,牛顿求瞬时速度,他也说不清楚△t到底是不是零。

这些说不清楚的问题,后来终于说清楚了,这就是极限思想的建立。

极限的奥秘

什么是极限?极限难懂吗?其实,我们在小学学算术的时候就认识极限,和它打过交道,只不过那时没有用极限来称呼它罢了。

从分数谈起

我们很熟悉分数。在分数化小数的时候,我们常常会碰到一类没完没了的小数。

你看,化13为小数,它等于0.333……,是一个无限循环小数。

你再看13 13 13=0.333…… 0.333…… 0.333……左端相加等于1,右端相加等于0.999……所以

1=0.999……

这个等式对吗?你是否觉得0.999……应该比1小一点点才对呢?可是这里划的是等号,表示

0.999……=1

这就是极限问题。

要是把13=0.333……两边同乘以6,就得到

2=1.999……

看起来,1.999……好像也应该比2小一点点才对,可是这里划的也是等号,表示两边一星半点也不差。

这到底是怎么回事呢?

在小学里,我们还学过无限循环小数化分数:

0.7=0.777……=79

0.14=0.141414……=1499

0.132=0.132132132……=132999

0.21547=0.215474747……=0.215 4799000

为什么在循环节下面写上几个9,就可以把循环小数化成为分数呢?这也是极限问题。

极限并不难懂,只要动脑筋多想想,是完全可以领会的。

惠施的名言

古希腊有一位诡辩家叫芝诺,我国古代战国时期,也有过一位精于辩论的有名人物叫惠施。惠施很有学问,据说他写的书要装好几大车。

惠施说:“一尺之棰,日取其半,万世不竭。”意思是说一根一尺长的棍,每天都把它断为两半,取走其中一半,千秋万代也取不完。

你看,第一天取走12尺,剩下12尺;第二天取走12尺的12,剩下14尺。这样继续分下去,剩下来的棍是18尺,116尺,1[]32尺……,虽然越分越短,可就是分不完,也取不完。

由分棍问题中,我们得到了一串有顺序的数:

1,12,14,18……

我们把这一串有顺序的数叫做“数列”,把其中每个数叫做数列的“项”。比如这个数列的第一项是1,第二项是12,第五项是116.

数列的种类

数列的种类很多。

数列1,12,14,18……有无穷多项,是一个无穷数列。它的特点是越变数值越小,越变越靠近零,近到要多近有多近。

数列0.9,0.99,0.999……也是一个无穷数列。它的特点是数值越变越大,越变越靠近1,近到要多近有多近。

数列1.9,2.01,1.999,2.0001……也是一个无穷数列。它的特点是数值一会儿大,一会儿小,总的变化趋势是越变越靠近2,近到要多近有多近。

数列1,1,1,1……是个无穷数列,各项都等于1,是一个常数列。

数列4,7,——1,53,——29,——0.05是一个有穷数列,一共有六项。它的变化杂乱无章,看不出什么规律来。

我们应该把注意力集中在前面三种无穷数列上。它们的共同特点是越变越靠近某个固定的数。认真研究一下它们的变化规律,我们会发现用“靠近”这个词,来形容它们与某一个固定数的关系还不够确切。比如数列0.9,0.99,0.999……与1的关系,已经靠近到了这样一种程度,这个数列充分靠后的项,与1近到了“你要多近有多近”,“你说多近,可以近到比你说的还近”。

杂技钻圈

你看过杂技钻圈吗?舞台上立着几个直径很小的圈,演员们个个轻巧灵活,像猫一样在几个圈之间钻来钻去。

下面,我们来看一个数学杂技钻圈,“演员”是无穷数列0.9,0.99,0.999……

在数轴上以1为圆心,画几个同心圆,这就是一个套一个的小圈。

从图可以看到,数列的第一项0.9,还在所有圈的外面;第二项0.99,就钻进到第三个圈里面去了;第三项0.999,钻到第四个圈里面去了……

数列的这个“演员”,比杂技演员的技术还要高超。杂技演员钻的圈不能无限制的小,比如直径比头还小的圈,就说什么也钻不进去了。但是,数列的这个“演员”可不论那一套,不管圈的直径有多小,它都能照样钻得进去。

半径为0.000000001的小圈,可够小的了,数列从第十项0.9999999999起,都能钻进到小圈里去。因为1——0.9999999999=0.0000000001<0.000000001,所以,0.9999999999应该在小圈里。你随便往小说好了,只要你能说出具体的数来,数列从某一项起就准能钻得进去。

但是,数列“演员”也有不如杂技演员的地方。杂技演员在表演钻圈时,既可以探身钻进去,也可以缩身退出来。数列“演员”0.9,0.99,0.999……就不行了,它从某一项起,只要钻进以1为中心的小圈里,就再也不能退出来了。

对杂技演员来说,不管你把圈放在什么地方,放在北京还是上海,放在中国还是外国,他们都可以同样表演。数列“演员”0.9,0.99,0.999……就不成了,它只会钻以1为中心的各种小圈。要是你把圈挪动一下,比如把中心挪到2,那它只能看着放在近旁的小圈,望圈叹息,钻不进去。因为数列0.9,0.99,0.999……只能越来越靠近1,不能超过1,所以就钻不进以2为中心、半径小于1的圈了。

根据同样的道理,数列1,12,14,18……可以钻进以0为中心的同心小圆里;

数列1.9,2.01,1.999,2.0001……可以钻进以2为中心的同心小圆里。

这三位数列“演员”,虽然钻圈的本领一样高强,但是它们的钻法各异,自成一派。

你看,数列0.9,0.99,0.999……总是从左往右钻圈;数列1,12,14,18……总是从右往左钻圈;数列1.9,2.01,1.999,2.0001……总是一左一右跳跃着钻圈。

一个无穷数列,要是从某一项开始,以后所有的项都是越来越靠近一个固定的数,靠近到“你要多近有多近”,“你说多近,可以近到比你说的还近”,我们就把这个固定的数,叫做这个无穷数列的极限!反过来看,要是一个无穷数列有极限的话,它一定是一位钻以极限为中心的小圈的能手。

0.9,0.99,0.999……的极限是1;

1,12,14,18……的极限是0;

1.9,2.01,1.999,2.0001……的极限是2.

谨防冒牌货

无穷数列0.9,0,0.99,0,0.999,0……有没有极限?1是它的极限吗?

我们说,这个数列没有极限,1不是它的极限。因为这个数列不是一心一意地、而是三心二意地靠近1.你看它往1靠近一步,下一项就跳回到零;再往1靠近一步,下一项又跳回到零。它有“猴脾气”,在里面呆不住,这不符合极限的要求,所以没有极服。

数列0.1,0.01,0.001,0.0001,0.00001,0.000001的极限是0吗?

这个数列变化的趋势,确实是越来越靠近0,但是它只有六项就完了,做不到“要多近有多近”,所以没有极限。因此,项数有限的数列,不管有多少项,根本谈不上有极限。

下面的几个数列有极限吗?如果有极限,极限是什么?

12,23,34……

1,2,3……

11,12,13……

4,4,4……

12,——14,18,——1[]16……

0.9,0.99,0.999,0.9999,0.99999

1,——1,1,——1……

请你动脑筋想一想,不要判断错了。

取胜的绝招

有些人,虽说不知道什么是无穷数列和极限,可是却会用它们去争论问题,运用灵活,你相信吗?

你听,这是甲、乙两个小同学看了电影《孙悟空大闹天空》后,正在兴高采烈、津津有味地争论。

甲:我有孙悟空的本领,说声“变”,我就可以变成一个一尺高的小人。

乙:我的本领比孙猴子高,我说声“变”,可以变成一个半尺高的小人。嘿,比你矮半截。

甲:半尺高算得了什么,我再说声“变”,就为成一个一寸高的小人啦。

乙:我再说声“变”哪,就半寸高了,还是比你矮一半。

甲不说话了,他在心里想,照这样说下去,没完没了,而他总比我矮。他终于想出了一个好主意,对乙说道:咱俩别抬杠了。这样吧,你比我年龄小,我让你先说。你可以随便往矮里变,只是不许变没了。你说了以后,就不许再改了,然后我再说,怎么样?

乙:行。他憋足了劲说:我可以变成一个一万万万万分之一寸高的小人。

甲胸有成竹地说:我可以变成两万万万万分之一寸高的小人,比你矮吧。

甲后发制人,取得了胜利。

要是有人不相信无穷数列12,14,18……的极限是0;12,23,34……的极限是1,你就可以采用这种后发制人的取胜绝招,使他点头称是,口服心服。

做一次游戏

知道了什么是极限,就可以来研究为什么0.999……=1了。

我们可以把无限循环小数0.999……看成无穷数列0.9,0.99,0.999……

因为1是这个无穷数列的极限,

所以有0.999……=1

啊,原来这个等式的含意是:无穷数列0.9,0.99,0.999……的极限等于1.

我们还可以把0.999……写成无穷多项的和:

0.999……=0.9 0.09 0.009 ……

因为0.999……=1

所以0.9 0.09 0.009 ……=1

这个等式很重要。现在,我们用这个等式来做一次取糖游戏;

假设在一个口袋里装有十块糖,你六秒钟取出一块,一分钟就把十块糖取出来了。要是口袋里的糖增加到一百块,让你一分钟全取出来,只要你动作快一些,能保证0.6秒取出一块,一分钟也就把糖全取出来了。

现在,假设口袋里装有无穷多块糖,让你一块一块地往外取,并且限你一分钟全取出来,你办得到吗?这一回,你恐怕要皱眉头了。

其实,这也没有什么不好办。只要你取糖的动作足够快,是可以在一分钟之内,把无穷多块糖全部取出来的。取的方法是,你取第一块糖用0.9分钟,取第二块糖用0.09分钟,取第三块糖用0.009分钟……你这样越取越快,把你取无穷多块糖所用的时间,加在一起就是0.9 0.09 0.009 ……=0.999……=1.

结果,恰好等于1分钟。这说明一分钟是可以把无穷多块糖全取出来的。

这条线多长

有一条由半圆组成的波形曲线。已知最左边的半圆半径为0.9厘米,往右各半圆的半径,依次是它左边半圆半径的十分之一,即

R1=0.9厘米,R2=0.09厘米,R3=0.009厘米……

虽然说半圆的半径越来越短了,但是永远不可能等于零,问这条波形曲线有多长?

乍一看,这条曲线好像不会有确定的长度。究竟有没有?需要动手算一算。

我们知道半圆的周长是πR。假设整条波形曲线的长度为l,那么

l=0.9π 0.09π 0.009π ……

=π(0.9 0.09 0.009 ……)

因为0.9 0.09 0.009 ……=0.999……=1

所以l=π×1=π

计算结果表明:这条无限振荡、不断伸长的波形曲线,它的总长等于π厘米!

给勇士平反

极限能帮助我们解决很多疑难问题。

前面讲到“飞矢不动”的诡辩,那位芝诺还提出过另外一个诡辩,叫做“阿溪里斯追不上乌龟”。

阿溪里斯是古希腊神话中的善跑的勇士。芝诺说,阿溪里斯尽管跑得非常快,但是他却追不上一只在他前面爬行的乌龟。这是怎么回事呢?

芝诺说,假设乌龟从A点起在前面爬,阿溪里斯从O点出发在后面追。当阿溪里斯追到乌龟的出发点A时,乌龟同时向前爬行了一小段——到了B点;当阿溪里斯从A点再追到B点时,乌龟又向前爬行了一小段——到了C点。依此类推,阿溪里斯每次都需要先追到乌龟的出发点;而在阿溪里斯往前追的同时,乌龟总是又向前爬行了一小段。尽管阿溪里斯离乌龟的距离越来越近,可是永远也别想追上乌龟。

过去,许多人不知道怎样去驳倒芝诺。现在,有了极限的方法,就很容易戳穿他的谎言,把他彻底驳倒。

假定阿溪里斯的速度是10米/秒,乌龟的速度是1米/秒;乌龟的出发点是A,阿溪里斯的出发点是O,OA=9米。

当阿溪里斯用0.9秒跑完9米到了A点;乌龟在0.9秒的时间内,向前爬行了0.9米,到了B点。阿溪里斯再用0.09秒跑完0.9米,追到了B点;乌龟同时又向前爬行了0.09米,到了C点……

阿溪里斯一段一段地向前追赶,所用的总时间t和总距离s是

t=0.9 0.09 0.009 ……(秒)

s=9 0.9 0.09 ……(米)

因为0.9 0.09 0.009 ……=0.999……=1

所以t=1(秒)

s=10×(0.9 0.09 0.009 ……)

=10×1=10(米)

计算表明,阿溪里斯只用了一秒钟,跑了十米路,就把乌龟追上了!

看来,阿溪里斯真要感谢极限了。要不是极限把问题给搞清楚了,他还要蒙受追上不乌龟的耻辱。

制作望远镜

我们来介绍极限在几何上的一个应用。

雨天骑自行车,车轮带起的雨水,是沿着车轮的切线方向飞出去的。

圆周上一点A的切线好求。联OA,过A作LA⊥OA,LA就是切线。科学研究的发展,迫切需要解决怎样作一般曲线的切线。

三百多年前,荷兰卖镜片的亨斯无意中发现,把一片老花镜和一片近视镜组装在一起,可以看清楚远处的景物,制成了第一架望远镜。

伽利略改进了望远镜,造出了能放大32倍的望远镜。他用这架望远镜,发现了月亮上的高山和谷地,发现了太阳上的黑子,发现了木星的四颗卫星。这一系列的发现,惊动了当时欧洲的科学界,许多科学家纷纷制作倍数更大的望远镜。

制作望远镜促进了光学的研究。原来,镜片的弯曲程度,直接影响着望远镜的放大倍数,而镜片弯曲程度的计算和设计,都要用到切线。

怎样求一般曲线的切线?人们曾经提出过许多方法。但是在这些方法中,都存在着一些不能令人满意的地方。后来,人们应用极限的思想,把切线看作是割线的极限位置,很好地解决了曲线的切线问题。

当B点沿着曲线C向A点运动时,割线AB就以A为中心转动。在B点无限趋近A点的过程中,割线AB如果有一个极限位置L存在的话,那么,直线L就叫做曲线C在A点的切线。

认识无穷小

以零为极限的无穷数列很重要。

1,12,13,14……

1,——12,14,——18……

13,133,1333……

——0.4,0.04,——0.004,0.0004……

这些数列的共同点是:越变绝对值越小,越变越靠近零。我们把这种绝对值越来越小,以零为极限的无穷数列叫做无穷小。

要是让无穷小的每一项都翻一个跟头,变成为它的倒数,就可以得到另外一种数列。你看,把上面四个无穷小翻一个跟头得到

1,2,3,4……

1,-2,4,-8……

3,33,333……

-10.4,10.04,-10.004,10.0004……

这四个新数列的共同特点是:绝对值越变越大,充分靠后的项的绝对值,可以大到“你要多大有多大”,“你说多大,可以变得比你说的还大”。我们把这种无穷数列叫做无穷大。

无穷小和无穷大的数值相差很大,但是关系密切。无穷小翻一个根头,就变成了无穷大;无穷大翻一个根头,就变成了无穷小。

无穷小还和别的有极限的无穷数列特别要好,好到形影不离。凡是有极限的地方,总少不了无穷小。

无穷数列0.9,0.99,0.999……的极限是1,伴随着它,有一个无穷数列

0.1,0.01,0.001……

很明显,这个数列的数值越变越小,以0为极限,是一个无穷小。

无穷数列1.9,2.01,1.999,2.0001……的极限是2,伴随着它的无穷小是

0.1,-0.01,0.001,-0.0001……

通过这两个例子,我们可以总结出一个数列有极限,求伴随它的无穷小的方法是:拿数列的极限,依次减去数列的每一项,就得到了这个无穷小。

请你求一求,伴随下面几个数列的无穷小:

12,23,34,45……的极限是1;

2,32,43,54……的极限是1;

4,73,105,137……的极限是32;

1,14,19,116……的极限是0.

极限和无穷小的这种亲密关系,你可以自己动手画个图形来看就更清楚了。

你看,把等腰三角形ABC的底边AC分成8等份,作一个内接台阶形。台阶形的面积与ΔABC的面积的差,就是图上靠在两腰上的8个小三角形面积的和。

当我们把底边AC分成为16等分时,内接台阶形的面积就更接近ΔABC的面积了。也就是说,边上16个小三角形面积的和变得更小了。

当我们把底边AC分划的份数无限增多时,台阶形面积的极限就是ΔABC的面积。也就是靠两腰的三角形个数无限增加,而它们的面积的和是一个无穷小。

驳倒大主教

前面讲到牛顿从平均速度出发,正确地求出了瞬时速度。但是,他说不清楚Δt是不是零,以至被大主教贝克莱钻了空子,胡说Δt是什么消失了数量的“量的鬼魂”。有了极限,我们就可以驳倒贝克莱的谎言了。

牛顿求瞬时速度的方法,是先求出平均速度v=ΔsΔt;当Δt越来越小时,平均速度越来越接近瞬时速度。还是拿前面的航船作例子,s=t2,Δs=4Δt (Δt)2,平均速度:

v=ΔsΔt=4 Δt。

我们可以给Δt-串越来越小的数值:

Δt=1秒,0.1秒,0.01秒,0.001秒……相应地得到平均速度v的一串数值:

v=5米/秒,4.1米/秒,4.01米/秒,4.001米/秒……

随着Δt越来越接近于零,平均速度v越来越接近4米/秒。它可以近到“你要多近有多近”,“你说多近,可以近到比你说的还近”。这就是说,4米/秒是平均速度的极限。

那么,Δt究竟是不是零呢?

从Δt的变化过程,我们可以清楚地看出,虽然Δt的值越来越小——1,0.1,0.01,0.001……但是它始终不等于零,所以我们求平均速度时,可以放心地拿Δt去除Δs,这样,平均速度ΔsΔt总是有意义的。

在Δt趋近于零的过程中,瞬时速度是平均速度的极限。这就是说,在取极限过程中,Δt始终没有取零。所以,不用担心会出现Δt=0这个不合理的步骤。

由于极限的结果与令Δt=0的结果完全一样,所以,牛顿能正确地求出瞬时速度的数值。在牛顿求瞬时速度的时候,极限的思想和方法还没有很好地建立起来,他只从结果上考虑,令Δt=0,造成了理论上的缺欠,让贝克莱钻了空子。

从极限角度看来,Δt是一个无穷小,以零为极限。

小扇形问题

开普勒一开始就把圆分割成无穷多个小扇形,正确地求出了圆面积。但是他说不清楚,每个小扇形的面积是不是零。

从极限角度来看,在开普勒对圆进行细分的过程中,得到了一串越来越小的小扇形面积,这些小扇形的面积,组成的数列是一个无穷小。它本身不是零,而是以零为极限。

当开普勒把小扇形换成为小三角形以后,小三角形面积的和,就是圆面积的近似值了。小扇形越小,相应的小三角形也越小,它们相差得也越小。这样,小三角形面积的和,也就越接近圆面积了。

在细分圆的过程中,小三角形面积的和组成了一个无穷数列,圆面积就是这个无穷数列的极限。

卡瓦利里用“不可分量”的方法求面积和体积遗留下来的问题,也同样可以用极限把它说清楚。

巧妙的方法

极限和无穷小紧紧相连,是无限过程的结果。要是把极限比做一曲动听的交响乐,那它的每一个乐章,都离不开无限这个主题。

π等于多少

π等于多少?

你回答:π等于3.1416.

3.1416是π的近似值,π的精确值等于多少?

你回答:π是一个无理数,是一个无限不循环小数。因为无限而又不循环,所以需要没完没了地写下去,并且永远也别想把它写完。

答得很好。既然π的值需要没完没了地写下去,永远也写不完,你怎么知道π一定存在呢?

你问道:这……这是什么问题呀?

这个问题很重要。看来,你还没想到过这个问题。

整数和分数的存在是不容怀疑的。无限循环小数可以化成分数,它的存在也是不容怀疑的。一个永远写不完、又没有循环规律的无限不循环小数,怎么能肯定它的存在呢?

仔细想想这个问题,实在有认真研究的必要。下面,我们就来谈谈这个问题。

胡同里捉鸡

不知谁家的鸡跑到胡同里来了。

忽然,从一家院子里跑出来了一个小男孩,他想捉住这只鸡。只见鸡在前面,一会儿快跑,一会儿慢走;小男孩一个劲在后面追,累得满头大汗,也没有捉住鸡。

这时候,从胡同的另一头,走来了一个小女孩,两个人一人把住一头,一步一步地逼近鸡。当两个小孩碰面的时候,鸡无处可逃,终于被捉住了。

小胡同里捉鸡启发了我们。如果把数轴当作一条小胡同,把π当作跑进胡同里的鸡,看看我们能不能用胡同里捉鸡的办法,去捉住π这只鸡。如果能够捉住,当然就可以肯定π的存在了。

在捉π的时候,我们通过圆内接正多边形和外切正多边形,可以不断地算出π的不足近似值和过剩近似值,用这两串数把π夹在中间:

3<π<4

3.1<π<3.2

3.14<π<3.15

3.141<π<3.142

……

如果把这两串数值画在数轴上,我们会发现这两串数越来越靠近,就像两个小孩从胡同的两头,一步一步地逼近鸡似的。既然两个小孩碰面的时候,鸡被捉住了;那么,这两串数“碰面”的时候,就应该能捉住π。

数学上已经证明,用捉鸡的方法,在数轴上捕捉实数时,一定能捕捉到一个,绝不会叫你扑空。

对于任意给定的无穷数列

x1,x2,x3……

如果我们能够找到两列有共同极限的无穷数列:

a1,a2,a3……的极限为M,

b1,b2,b3……的极限也为M,

把所给的数列夹持在这两个数列之间,即

a1≤x1≤b1,a2≤x2≤b2,a3≤x3≤b3……

那么,所给的数列一定也以M为极限,即

x1,x2,x3……的极限为M。

这个确定极限存在的方法,是用已知去逼近未知,用处广泛,十分重要。

死胡同捉e

e和π一样是一个无理数,一样很有用。

e是怎样得到的呢?原来人们在研究无穷数列

(1 11)1,(1 12)2,(1 12)3……(1 1n)n……时,证明这个数列肯定有一个极限存在,可是这个极限的数值等于多少呢?

观察这个数列的变化规律:

(1 11)1=(1 1)1=2

(1 12)2=(32)2=2.25

(1 13)3=(43)3=6427≈2.37

(1 14)4=(54)4=625256≈2.44

……

这个数列的数值从第一项起,一项比一项大。但是,不管你怎么往下算,它的数值永远小于2.8.这就好比在一条死胡同里捉鸡。

在死胡同里捉鸡,就不再需要两个小孩了,只要一个小孩就可以把鸡捉到。2.8就好比是胡同里堵死的一端。这个数列的极限,就好比是要捉的鸡;一项一项的数值,就好比是步步逼近鸡的小孩。当鸡跑近胡同的一头,无处可逃时,也终于让小孩捉住了。

人们就是用类似死胡同里捉鸡的方法,去捕捉这个极限,发现它是个无理数。数学家用e来表示它,

e=2.718281828459045……

在数轴上捕捉实数,当发现一端是“堵死”的时候,只要从另一端步步逼近就可以了。

电工找断线

在具体使用两边夹逼的方法时,怎样才能找到两串数,由两边来逼近所求的值呢?使用较多的是“二分逼近法”。电工找断线,用的就是这个方法。

电线AB,不知什么地方断了。请来电工,他首先找到AB的中点C,测试一下,如果AC之间通电,断线肯定在BC中间;如果AC之间不通电,那一定是AC中间断了。假定是AC中间断了,他再找到AC的中点D,用同样的方法,找出断线是在AD之间,还是在DC之间。假定是DC之间断了,他再找出DC的中点E。这样一次一次地测试,测试的电线一次比一次短,经过几次测试,就可以把断头找出来了。

电工寻找未知点,总是把断线一分为二,然后步步逼近。现在,我们用二分逼近法来捕捉无理数3:

因为12<3<22,

所以3必然在1和2之间。

找到1和2的中点1.5,

因为1.52=2.25<3,

所以3必然在1.5和2之间。

再找到1.5和2的中点1.75,

因为1.752=3.0625>3,

所以3必然在1.5和1.75之间。

这样继续下去,范围越来越小,所得到3的近似值,也就越来越精确了。

当然,根据需要,采用别的分法也可以。

逼近曲边形

由曲线OB的端点B,引垂直于OX轴的直线BA,得到一个曲边三角形OAB。怎样求曲边三角形OAB的面积呢?

乍一看去,这个问题好像很难,因为没有现成的公式可用。要是我们采用小孩捉鸡的方法,去逼近曲边三角形OAB,很快就可以把它的面积求出来。

先把OA分成四等份,假设作出三个小矩形1,2,3.我们用这三个小矩形面积的和S3,来代替曲边三角形OAB的面积,相差的就是其中的斜线部分。S3可以计算出来:

S3=1 2 3=A1B1×A1A2 A2B2×A2A3 A3B3×A3A

=OA4×(A1B1 A2B2 A3B3)。

你可能会想,这样近似代替的误差不是太大吗?的确太大了,但是可以想办法使误差小一些。方法是把OA多分几份,比如分成十等份,作出九个小矩形。用九个小矩形面积的和S9,来代替两边三角形OAB的面积,这时相差的面积就小多了。

我们如果再多分下去,分得越多,相差的面积也越小。也就是说,所有小矩形面积的和,与曲边三角形OAB的面积越接近于相等。你看,在无限等份过程中,所有小矩形面积的极限,就是曲边三角形OAB的面积了。

在一般情况下,当我们还不知道另一边是不是“堵死”的时候,为了保险起见,我们应该从两边去逼近它。求曲边三角形OAB的面积,也可以用两边逼近法。

当我们等分OA的份数越来越多时,里面小矩形面积的和越来越大,外面小矩形面积的和越来越小;当里外“碰面”的时候,就捉住了曲边三角形OAB的面积这只“鸡”。

神秘的无限

在极限的基础上,建立起来了一门十分重要的数学分支叫做微积分。它专门和无限打交道。

在一般人看来,无穷、无限就是没完没了,没有尽头,没有止境。过去,有人把无限看成是神秘的、不可捉摸的东西;也有人把无限看成是崇高的、神圣的东西。诗人哈莱曾写诗颂扬无限:

我将时间堆上时间,世界堆上世界,将庞大的万千数字,堆积成山,假如我从可怕的峰巅,晕眩地再向你看,一切数的乘方,不管乘千来遍,还是够不着你一星半点。

也有人觉得无限是不可理解的。德国哲学家康德,就曾经为无限苦恼过。他说,无限像一个梦,一个人永远看不出前面还有多少路要走。看不到尽头,尽头是摔了一跤或者晕倒下去。但是,尽管是摔了一跤或者晕倒下去,也不可能到达无限的尽头。

微积分恰恰是运用这种被看作是不可理解的无限,创造出一种崭新的数学方法,为解决大量的实际问题,为科学技术的发展,作出了十分宝贵的贡献。

现在,微积分这棵参天大树,已经是枝叶繁茂,果实累累,正在为人类作出更大的贡献。

惊人的预言

自牛顿和莱布尼兹创立微积分到现在,已经三个世纪了。恩格斯说:在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样,被看作是人类精神的最高胜利了。

下面,讲几个早期的例子,看看微积分是怎样推动自然科学向前发展的。

地球的模样

18世纪的欧洲,随着科学的进步,人们逐渐认识到地球不是一个很圆的球体,而是有一点扁,是一个扁球体。地球是怎样扁法的呢?在那时却有着两种截然不同的认识,形成了两个对立的学派。

一派是以法国巴黎天文台台长卡西尼为首的法国科学家。他们根据法国哲学家笛卡儿的宇宙学说,认为地球在南北两极是伸长的,像一个直立的鸡蛋。但是,牛顿利用力学原理,用微积分等数学工具,对地球的形状进行了计算,算出地球的形状在两极是扁平的,扁平率为1230.这就形成了另一派。两派争论激烈,谁也说服不了谁。

为了让事实作出回答,1735年,法国巴黎科学院同时派出两支测量远征队,进行大地测量,以便判定谁是谁非。一支测量队到南美秘鲁的别鲁安,另一支测量队到北方的拉普兰德。测量的结果,表明了地球是扁平的。

地球扁平形状的确定,是牛顿力学的胜利,也是微积分的胜利。

哈雷的功绩

彗星是一种特殊的天体。它有一颗明亮的彗头,拖着一条美丽的彗尾。在很长的时期里,人们不了解彗星是什么东西,以为它在天上一出现,地上就要发生大灾大难。

科学从它产生的那天起就是反对迷信的。1682年,英国天文学家哈雷,对那一年出现的一颗彗星进行了计算,又整理了从1337年以来有关彗星的记录。他根据微积分计算出来的结果,宣布这颗彗星在1758年还要回来的。

1743年,法国数学家克雷罗,考虑到木星和土星对这颗彗星的影响,用微积分重新进行了计算。克雷罗指出:这颗彗星由于受木星和土星的影响,将不在1758年,而是在1759年再一次出现。到了1759年,这颗美丽的彗星果然又一次出现在夜空中。

这颗彗星的按期出现,证实了哈雷预言的正确,为了表彰哈雷的功绩,后来,人们就把这颗彗星叫做“哈雷彗星”。

在我国史书上,有这颗彗星出现的最早和最完整的记载,第一次是在公元前611年。

把数算错了

细心的科学家有时也会算错数。根据推算,哈雷彗星将于1910年再一次出现。可是,因为在计算哈雷彗星轨道时算错了数,他们曾预言在1910年,哈雷彗星会与地球迎面相撞,一起毁掉。于是,教会乘机大作文章,说什么1910年是“人类的末日”。有的人害怕地球与哈雷彗星相撞,赶忙卖掉财产,吃喝玩乐之后,跳楼自杀了。后来科学家发现轨道计算错了,又重新进行了计算,结果是地球并不会与哈雷彗星迎面相撞,而只是穿过哈雷彗星的尾部。

一波未平,一波又起。又有人造谣说哈雷彗星的尾部是由剧毒气体组成,人类即使不被哈雷彗星撞死,也会被剧毒气体熏死。有人出主意,让每家准备好大水缸,装好水,等哈雷彗星一到,人立刻钻进水缸里去。还有的药店,兜售什么“彗星药丸”,说吃了就可以不被毒死。

1910年,人们怀着紧张的心情,等来了哈雷彗星。可是,除了看见美丽明亮的哈雷彗星外,全世界安然无恙。

根据计算,哈雷彗星下一次将于1985年末出现。

发现海王星

太阳系有九大行星。由里往外数,最外面的三颗,依次是天王星、海王星和冥王星。这三颗行星,因为离地球越来越远,不容易看到,所以一个比一个发现晚。

1781年,英国天文学家赫歇耳,用望远镜发现了天王星。在研究天王星运行轨道时,发现实际观察的轨道,与根据力学原理,用微积分等数学工具计算出来的轨道不相符合。这是为什么呢?当时就有人预言:在天王星的外面,可能还存在着一颗尚未发现的新行星。可是,在无边无际的天空,到哪儿去找这颗新行星呢?

64年过去了。到了1845年,英国剑桥大学数学系学生亚当斯,根据力学原理,利用微积分等数学工具,进行了一系列困难的计算,算出了这颗新行星的轨道。这年10月21日,他把计算的结果,寄给了英国格林威治天文台台长艾利,可惜没有引起重视,也没有人用望远镜去寻找这颗新行星。

比亚当斯稍晚,法国巴黎天文台青年科学家勒威耶,用微积分等数学工具,计算了由几十个方程组成的方程组,算出了这颗新行星的轨道。1846年9月18日,勒威耶写信给当时拥有详细星图的柏林天文台的伽勒。他在信中写道:“请你把你们的天文镜指向黄经326°外的宝瓶座内的黄道的一点上,你就将在离此点的1°左右的区域内,发现一个圆面显明的新行星。”伽勒于1846年9月23日夜间,就在离所指点相差52′的地方,发现了这颗新行星。人们给它取名海王星。

这颗新行星的发现,完全是根据力学原理,用微积分等数学工具算出来的。因此,人们称海王星为一颗笔尖上的行星。

1915年,美国天文学家洛韦耳,用同样方法算出了太阳系中最远的一颗行星——冥王星的存在。1930年,美国的汤波真的发现了这颗行星。

利用微积分进行计算,人们还解决了月亮会不会撞到地球上的问题。

当时天文观测的结果表明,月亮的轨道正在不断缩小。人们开始担心是不是有那么一天,月亮会和地球相撞呢?后来用微积分计算,证明了月亮轨道的缩小是周期性的,缩到一定程度后还要开始膨胀,根本用不着杞人忧天,担心月亮和地球相撞。

一门生命力强的学科,必须有坚实的理论基础。微积分的基础是极限理论。微积分创立于17世纪,可是极限理论的提出却相当晚,它是在19世纪,由法国的柯西和德国的维尔斯特拉斯提出来的。

在极限理论产生之前,人们对微积分的基础有着各种不同看法和争论。当时,虽然在科学研究中广泛使用微积分,可是对于什么是微积分的基础,却没有一个共同的认识。恩格斯说过:大多数人进行微分和积分,并不是由于他们懂得他们在做什么,而是出于单纯的相信,因为直到现在得出的结果总是正确的。

极限理论的产生,统一了人们的认识,推动了微积分的发展。

1960年,美国数学家鲁滨逊运用数理逻辑的科学方法,把微积分建立在一种新的数学理论之上。科学家为了区别以极限理论为基础的微积分,把在新基础上建立起来的微积分叫做“非标准分析”。

非标准分析问世20年来,引起了数学界的广泛注意,也产生了一些不同的看法。有的数学家认为,非标准分析比传统的微积分更严谨,更适用于进行理论上的探索。也有的数学家认为,非标准分析把传统微积分中丰富的思想砍掉了;个别人甚至把传统微积分比做一个美女,说非标准分析是一具“美女的骷髅”。

认识在争论中提高,科学在争论中发展。明天的微积分,一定会更加完善、充实和有用!

二十世纪数学的领航人

19世纪最后一年——1900年的夏天,在巴黎塞纳河畔举行的第二次国际数学家代表大会上,一位30多岁的年轻数学家在他所做的报告《数学问题》中,提出了23个数学问题,总结他那个时代的数学研究。在此后的数十年里,这23个问题几乎完全左右着数学发展的方向,对20世纪的数学发展产生了巨大的影响,为许许多多的数学家们带来欢乐,也带来苦恼。这个提出23个问题的人,便是德国数学家希尔伯特(1862~1943,1888年他以独创方式发展了不变量的数学,证明了不变系的基的有限性)。后来,这23个问题被称为“希尔伯特问题”。

希尔伯特于1862年1月23日生于德国的哥尼斯堡(现今为俄罗斯的加里宁格勒)。希尔伯特的母亲是一位对哲学和天文学极有兴趣的女性。希尔伯特从小便受到母亲的熏陶,这为他后来的成长产生了良好的作用。

希尔伯特幼年时记忆力很差,理解概念的反应速度也极慢,经常受到老师的批评。后来上中学时,他结识了犹太人闵可夫斯基家才华出众的三兄弟。希尔伯特希望自己能像闵可夫斯基兄弟那样,受到人们的尊重。他努力克服自身的弱点,深入体会数学中的概念,在闵可夫斯基兄弟的影响下,希尔伯特找到了他喜爱的科目——数学。

后来,他分别在哥尼斯堡大学、海德堡大学学习。数学名家富克斯的数学思想深深影响了希尔伯特,后来他又返回哥尼斯堡大学。不久,闵可夫斯基、希尔伯特和年龄稍大一些的赫维茨,成了哥尼斯堡数学圈子里著名的“三剑客”。他们几乎讨论了数学各个领域的问题,相互交换获得的研究成果,交流彼此间的想法和研究设想。

希尔伯特大学毕业以后,进行了一次成效显著的学习旅行,这次旅行使他弥补了因身居哥尼斯堡小城而造成的孤陋寡闻的缺憾。希尔伯特拜访了德国数学界的传奇人物克莱因。希尔伯特选听了克莱因的课,还参加了克莱因的一个讨论班。他深为克莱因所器重,克莱因推荐希尔伯特前往法国巴黎。在巴黎,他了解到国际数学界的研究状况,大大地开阔了眼界。

后来回到优美宁静的哥尼斯堡,希尔伯特沉浸在关于不变量理论的果尔丹问题里。这一问题,数学家们已经花费了很大的力气。但只经过半年的艰苦攻关,果尔丹问题居然被希尔伯特解决了。

1895年,应克莱因之邀,他来到数学家高斯的故乡哥廷根。来到哥廷根不足一年,希尔伯特和闵可夫斯基合作,完成了一篇关于数论研究方面的综合论文,成为数论领域中的经典作品。不久,又发表了《相对阿贝尔域理论》的论文,建立了探讨“类域”论所必需的方法和概念。这是希尔伯特独创性的显露。1898年~1899年,希尔伯特编著了囊括整个几何学领域的重要著作《几何基础》,获得科学界的称赞。

偏偏就在人们的赞叹声中,希尔伯特瞄准了著名的“狄里克莱原理”。直到19世纪末,数学家仍把对这个原理的探索看做死胡同,然而希尔伯特却妙手回春,“复活”了狄里克莱原理,在国际数学界震动一时。

20世纪来到了,希尔伯特的数学兴趣更广泛了,他几乎涉足了数学的全部领域。在闵可夫斯基和赫维茨的协助下,1920年夏,在第二次国际数学代表大会上,他提出了著名的“希尔伯特问题”。随着狄里克莱原理的解决,他为数学分析的精确性和逻辑无矛盾性奠定了重要基础。

1912年,希尔伯特50岁,关于微积分方程的成果,使他走进数学与物理的边缘地区。这一年,他发表了一篇有关气体分子运动论方面的基础论文,宣告了希尔伯特的兴趣点已经转向物理学方面。

20世纪初期,以物理三大发现为序幕,在量子力学和相对论两个领域,现代物理学进行了一场深刻的革命,现代物理学硕果迭出,成为时代发展的热点。当时,由于新的物理学尚未迫使经典物理学退出历史舞台,物理学领域在外行人看来显得一片混乱。

希尔伯特相信运用公理化方法可使物理学摆脱混乱,但他也承认,光靠数学的力量解决不了物理学问题。这时,希尔伯特求助他的老朋友索末菲给他介绍最新的物理学成就。索末菲是一位优秀的物理学家,在量子理论和原子结构等方面有很深的研究。他不仅耐心地向数学家希尔伯特介绍了物理学家的重大发现,而且专门派他的一名学生,到哥廷根作希尔伯特的助手。希尔伯特虽然理解艰深、晦涩的物理概念显得很迟缓,但是他一经理解发生在物质微观领域中的事物本质,就能够抓住要领。1915年冬季,伟大的物理学家爱因斯坦获得了研究决定引力场与微分形成的系数的相互关系方面的结果,并且先后发表了两篇广义相对论的论文。事实上,希尔伯特则用了完全不同的、更为直接的方法,独立地解决了类似课题,并于同年11月20日向哥廷根科学协会提交了论文,仅比爱因斯坦第一篇论文晚了9天,而早于爱因斯坦第二篇论文6天。

希尔伯特坦诚地承认,广义相对论这一伟大思想,应该归功于爱因斯坦。他认为爱因斯坦关于广义相对论的几何抽象更完善。1915年,希尔伯特推荐爱因斯坦荣获鲍耶奖。

希尔伯特一生追求确立数学的相容性,追求纯粹数学演绎过程的无矛盾性,成为数学发展史上形式主义流派的创始人,有力地推动了数学的发展。特别是他提出的23个希尔伯特问题为20世纪数学研究指明了方向。

希尔伯特去世后,得到了这样的评价:“他像长河上的惟一一座大桥,不论人们来去何方,都要经过它。因为它连接两个数学世纪。”

三元渗透原理的发现

赫尔曼魏尔(Claude Hugo Hermann Weyl,1885~1955),德国数学家,把纯粹数学和理论物理学联系起来,创立了数学新分支,把麦克斯韦的电磁场和引力场表现为时、空的几何性质,重要著作有《黎曼曲面概念》、《空间、时间、物质》、《群论和量子力学》。他1885年11月9日生于德国汉堡附近的一个小镇埃尔姆荷恩。他父亲路德维希是钱庄的经纪人,母亲安娜是家庭妇女。1904年,18岁的魏尔从阿尔托那中学毕业后,进入哥廷根大学学习数学。当时以希尔伯特为代表的哥廷根学派,已经是世界数学的中心,希尔伯特和闵可夫斯基在20世纪最初10年培养起一代新人,也将数学发展推向一个新阶段。魏尔就是以一个乡下孩子的身份在这个幸运的环境中走入数学王国的。

在哥廷根,魏尔像海绵吸水那样从数学大师希尔伯特那里吮吸营养。1907年,他开始写博士论文《奇异积分方程》,这是他第一篇学术著作,标志着他学术生涯的开始。1910年,魏尔取得了哥廷根大学的无薪讲师职位,留在希尔伯特身边从事研究工作。

1911年~1912年,魏尔在哥廷根大学开设黎曼的函数论,讲课和进一步研究促使魏尔1913年出版了《黎曼曲面概念》一书。这部经典著作直接奠定了一般拓扑学的基础,使拓扑学成为当代数学的天皇。

1913年秋,魏尔与海拉结婚,从此,海拉一生分享着魏尔对于科学、哲学、艺术和文学的欣赏趣味,成了魏尔离不开的精神伴侣,她为魏尔安排了一个舒适美满的家庭。他们后来在普林斯顿的住所成为数学家、著名作家、哲学家经常聚会的高级文化中心,欧洲式的文化沙龙。婚后,魏尔应邀去瑞士苏黎世大学任教。在湖光山色、风景宜人的苏黎世,魏尔结识了爱因斯坦,与爱因斯坦的谈话使魏尔开始注意物理学革命的新领域。还没等魏尔投入研究,第一次世界大战爆发了,远在瑞士的魏尔不得不在1915年应征入伍服了一年兵役。

1913年~1915年,爱因斯坦发表广义相对论;1919年5月英国天文学家观测日食,证实了光在引力场中的偏转,从而引起轰动。接着量子论也蓬勃发展。1925年~1926年,量子力学建立起来,人们开始深入研究分子、原子、原子核及基本粒子。物理学革命带来了物理学发展的空前繁荣。

面对20世纪20年代物理学的繁荣及发展,大数学家都作出了自己的反应。哥廷根大学的希尔伯特和闵可夫斯基在对狭义相对论作出自己的贡献之后,不久就去世了。希尔伯特把自己的注意力从数学分析转向物理学,并独立地提出广义相对论引力方程的完整形式。量子力学产生之后,希尔伯特又与他的学生一起研究这门新学科。

在时局动荡的岁月中,魏尔也完成了他最重要的研究,实现了从经典数学到现代数学的历史转变。首先,在爱因斯坦的影响下,他运用数学工具闯入了统一场理论,试图把引力场和电磁场统一起来。爱因斯坦广义相对论的数学基础,是黎曼几何和张量演算,魏尔对黎曼数学堪称行家里手。他对广义相对论的统一场论问题跃跃欲试,试图大展才略。尽管直到今天为止统一场论最后仍然没有解决,但魏尔的刻苦努力产生的副产品,却得到了空前的发展,这就是数学纤维丛理论。

魏尔从1915年起,对利用数学方法表达爱因斯坦理论的工作一直不遗余力。1916年~1917年,他在苏黎世高等工业学院开课,讲授相对论,同时自己进行几何学及相对论的研究,其结果产生出《空间、时间、物质》这本著作。

这是20世纪把数学、物理学、哲学进行三结合的重要经典,也是给物理学家系统阐述数学知识同时使数学家了解物理学的第一部著作,又是第一部系统介绍广义相对论的著作。由于清晰而严谨的叙述,出版后立即受到学术界的普遍欢迎。

从1918年初~1923年5年之内,这本书再版了5次,成为年轻学者的入门书。量子力学的矩阵理论的创始人海森堡,在大学时代就是这本书的热心读者。数学家受到这本书的鼓舞,在短暂的时间内,便掀起了微积分几何竞相发展的高潮。

爱因斯坦与魏尔是一对相互敬重的好朋友,爱因斯坦对同行们说:“我相信,魏尔不仅是一位出类拔萃的人物,而且在为人方面也是讨人喜欢的。只要有机会与他见面,我是不会错过的。”

魏尔在数学方面多次协助爱因斯坦,爱因斯坦也试图从物理学方面启发魏尔。

1923年,魏尔开始研究连续群的性质,先后发表三篇对数学发展颇有影响的论文。这时量子力学刚刚诞生,群,开始被引进物理学。当时,对于多数物理学家来说,对群的概念普遍感到陌生,甚至有些厌恶。他们觉得这只不过是数学家故弄玄虚。物理学家只是在结晶学中碰到过群。维格纳、冯诺依曼及魏尔是最早把群用到量子力学上的人。

1928年,魏尔写的《群论与量子力学》一书问世了。在大多数物理学家还不懂线性代数的时候,群论实在太神秘了。这本书是为物理学家学习线性代数和群论,同时也为数学家学习量子力学而撰写的。它不仅成了这一领域的经典著作,而且再一次促进了从19世纪中叶以后日益疏远的数学及物理学之间的紧密结合。

这一次,魏尔不再满足于给数学家和物理学家当“媒人”,他干脆自己干了起来。他要像物理学家那样干点有物理意义的工作,以便真刀实枪地在物理研究中发展数学。他在电子自旋、中微子二分量理论以及价键理论中作出了重要贡献。

1930年,希尔伯特退休,他希望魏尔继承自己的职位。这时哥廷根大学已经走下坡路了,魏尔希望恢复哥廷根大学昔日的荣光,毅然接受了哥廷根大学的教授职务。希特勒上台后,大搞反犹太活动,魏尔的妻子海拉属于半个犹太人,他受到株连。这时,在美国的朋友不断催他赶紧离开德国,否则就太晚了。书生气十足的魏尔一再犹豫不决,最后,爱因斯坦的信终于打动了他,由此魏尔踏上美国国土,在大洋彼岸度过了他的后半生。

到美国后,魏尔在培养数学人才方面,做出了巨大的贡献。他从各国吸收优秀人才,曾邀请陈省身、小平邦彦等人到普林斯顿,他们后来都成为当代杰出的数学家。魏尔对美国数学发展也有所贡献,他写的《代数数论》等著作,使从高斯到希尔伯特的欧洲数论在美洲得到普及,引发了战后美国在这方面的卓越贡献。

第二次世界大战期间,这位年近花甲的老人仍然孜孜不倦地继续他的数学研究工作。除了他过去的老题目之外,他热心地注意新近的数学发展,紧紧跟随年轻人的步伐。魏尔直到70岁还能够把当时新出现的代数拓扑学的复杂计算讲得头头是道,引起许多人的震惊。

惨绝人寰的第二次世界大战终于结束了。魏尔却又面临着个人的不幸,战后不久,与他恩爱一生的妻子海拉去世了,这使魏尔更加憔悴、忧伤。1955年12月9日,魏尔的心脏病突然发作,不幸与世长辞了。

科学通才创建控制论

控制系统是什么?其实并不神秘。人体就是一个灵敏的控制系统。人手不经心碰到热水,会下意识地缩回来。这是来自手的刺激传递给大脑,大脑向肌肉发出“收缩”的指令。如遥控器、自动开关、空调器、电冰箱等都有繁简不同的控制系统。电脑现已普及了,也是很典型的控制系统。

首创控制论的人名叫维纳(Norbert Wiener,1894~1964,美国数学家,建立了控制论科学。他对数学预测理论和量子理论等领域都提出了新的概念,被称为“控制论之父”)。

维纳1894年生于美国密苏里州哥伦比亚。维纳的父亲是俄籍犹太人,也是著名的哈佛大学语言学教授,年轻时曾当过小贩、清洁工,好学而富有进取心,靠自学取得教授的职位。他对儿子管教严格,希望他早日成才。

由于家中藏书甚多,这为维纳创造了良好的读书条件,他自幼养成广读书刊的习惯,4岁开始阅读书籍,7岁就能看但丁和达尔文的著作,并能流畅地阅读历史、语言、数学书刊。8岁时开始学解析几何学……维纳儿童时代就被人们看成“神童”。

维纳9岁进入中学,11岁便写出第一篇哲学论文《关于无知的理论》。12岁上大学,在大学里维纳的兴趣也不时地转换,先攻数学,后来又转到哲学、语言学,很快便达到通晓十国语言的水平,对汉语也颇有研究。18岁时,取得哈佛大学数理逻辑学博士学位。

维纳取得博士学位之后,先后到英国、德国和法国留学。在英国剑桥大学,维纳在著名数学家、哲学家、逻辑学家罗素等人的指导下,学习数学基础、数学逻辑以及爱因斯坦的相对论等科学新成果。他接触和熟悉了世界科学技术前沿的重大问题。这对他日后创立控制论起到了潜移默化的作用。

26岁的维纳受聘到麻省理工学院任教,维纳在数学方面的研究日益深入,获得了重大成就。他对数学的主要贡献是:提出无限维空间的一种测度,后人将其命名为“维纳测度”;制定复平面上的傅里叶变换理论;发展了外推理论和平稳随机过程的滤波理论。1933年,维纳在数学方面的研究成果已享有相当高的声誉,37岁时他当选为美国数学会会长。

维纳十分熟悉中国,他下功夫掌握了汉语,对中国人民有深厚的感情。1935~1936年间,维纳应邀来中国讲学,在清华大学讲授数理方面的课程。此时,维纳与他的学生、清华大学教授李郁荣合作,发明了新式继电器,在机电一体化方面获得了较大飞跃。这些成果为维纳后来完成控制论的创立,打下了基础。

从某种意义上说,维纳就是在中国这块地大物博的文明古国里,创立和奠基了控制论。自30年代末起,维纳参加哈佛医学院罗森勃吕特博士主持的科学方法讨论会,从而使他的控制论思想得以脱颖而出。会上思想非常活跃,不同专业的专家汇集在一起,以沙龙、咖啡饮茶会等轻松自在的形式,进行科学交流。人们从不同层面发表各种各样的见解,促进了各领域科学家间的相互了解和交流。

控制论的提出,首先是由于战争的需要。1940年,正是第二次世界大战中法西斯希特勒最猖獗的时候,法西斯德国出现了超音速飞机,高炮要瞄准目标很困难,肉眼观察,误差太大,急需安装自动控制系统,准确地预测飞行目标,增加高炮命中率。维纳和美国等反法西斯国家的科学家都加入防空自动控制的研制工作。

有一天维纳在郊外散步,遇到一位打鸟的猎人。猎枪随着飞鸟不断移动位置。他由此得到启发:高炮打飞机和人打鸟的道理是一样的,目标偏左时,就向左作一个校正,向右也同样。人的神经系统和机器的自动控制极为相似,都是通过从外界获取目标差距的信息,传达给中枢,发出指令,控制的过程实际就是不断传递信息的过程,这需要反馈信息来作调节。

控制论是把自动调节、通信工程、计算机和计算技术,以及神经生理学和病理学等以数学为纽带联结在一起,在这些学科相互作用的基础上形成的新学科。它主要为自动控制、人工智能、系统控制等提供理论依据。

控制论的初步研究成果为反法西斯战争作出了贡献。第二次世界大战中,当纳粹德国密如蜂群的轰炸机去轰炸英伦三岛时,只见少量的盟国飞机和密集的高射炮火巧妙配合,把入侵的德国飞机打得浓烟滚滚、纷纷坠毁。这就是盟国初步运用控制论思想,将防空飞机、高射炮火和刚刚发明的雷达结合成一个综合人机控制系统。

1948年,维纳的著作《控制论》一书出版,把“控制论”定义为“关于机器和生物的通讯和控制的科学”,宣告了这门学科的诞生。

控制论诞生不久,就与电子计算机相互结合,从而得到迅速发展,相继出现了工程控制论、生物控制论等新兴学科。1964年,经数学学会提名,这位曾被看成是“不安分大学生”的维纳获得了美国总统颁发的国家科学奖章,以表彰他致力于创造性科学的事业,对人类文明和进步做出的卓越贡献。可惜,几个星期之后,维纳心脏病发作,不幸于1964年3月18日病逝,享年70岁。